Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2015 Feb;36(2):179-85.
doi: 10.1016/j.placenta.2014.11.008. Epub 2014 Nov 25.

Magnesium sulfate affords protection against oxidative damage during severe preeclampsia

Affiliations
Clinical Trial

Magnesium sulfate affords protection against oxidative damage during severe preeclampsia

C Abad et al. Placenta. 2015 Feb.

Abstract

Introduction: MgSO4 is the drug of choice to prevent seizures in preeclamptic pregnant women, but its mechanism of action at the molecular level remains an enigma. In previous works, we found that treating preeclamptic women with MgSO4 reduces the lipid peroxidation of their red blood cell membranes to normal levels and leads to a significant reduction in the osmotic fragility of the red blood cells that is increased during preeclampsia. In addition, the increase in lipid peroxidation of red cell membranes induced by the Fenton reaction does not occur when MgSO4 is present.

Methods: The antioxidant protection of MgSO4 was evaluated in UV-C-treated red blood cell ghosts and syncytiotrophoblast plasma membranes by measuring their level of lipid peroxidation. The interaction of MgSO4 with free radicals was assessed for its association with the galvinoxyl radical, the quenching of H2O2-induced chemiluminescence and its effect on sensitized peroxidation of linoleic acid.

Results: a) MgSO4 protected red blood cell ghosts and the syncytiotrophoblast plasma membranes of normotensive pregnant women against lipid peroxidation induced by UV-C irradiation. b) MgSO4 does not seem to scavenge the galvinoxyl free radical. c) The quenching of the H2O2-enhanced luminol chemiluminescence is increased by the presence of MgSO4. d) The peroxidation of linoleic acid is significantly blocked by MgSO4.

Discussion: MgSO4 may provide protection against oxidative damage of plasma membranes through interactions with alkyl radicals.

Keywords: Antioxidant activity; Chemiluminescence; Magnesium sulfate; Preeclampsia.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources