Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009;1(3):171-81.

Doppler assessment of maternal central venous hemodynamics in uncomplicated pregnancy: a comprehensive review

Affiliations
Review

Doppler assessment of maternal central venous hemodynamics in uncomplicated pregnancy: a comprehensive review

W Gyselaers et al. Facts Views Vis Obgyn. 2009.
No abstract available

Keywords: Cardiovascular adaptation; doppler; gestational physiology; maternal veins; venous hemodynamics.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Anatomy of the lower central venous compartment from liver to kidneys. As is shown in the left panel, there are 3 hepatic veins (HV): left, middle and right, which are often accompanied by additional branches. Usually, left and middle HV fuse before draining into the vena cava inferior (VCI) at a few centimeters caudal from the right cardiac atrium. The right panel shows that the right renal vein (RV) is shorter and inserts more caudally into VCI then the left RV. Next to this, the right RV has more accessory branches and a wider proximal diameter than the left RV. Also, the left LV is sometimes sandwiched between Aorta and Superior Mesenteric Artery (Nutcracker Syndrome) and drains blood from the left ovarian vein.
Fig. 2
Fig. 2. Illustrations of 2D-ultrasound and Doppler images of the intrahepatic vascular tree. Panel A shows the standard view of the liver, scanned intercostally at the craniocaudal midportion. Panel B shows the colour Doppler image at this level, which enables distinguishing portal branches and hepatic arteries (red) from hepatic veins (blue). Panel C illustrates the typical triphasic HV Doppler wave pattern, in which the A-deflection represents backflow of blood from the right atrium into the hepatic venous circulation during atrial contraction. This pattern is mostly observed in non-pregnant individuals and during early pregnancy. Panel B illustrates a biphasic pattern, where the A-deflection is not reversed. This pattern is commonly observed during midgestation. Panel E illustrates the flat HV pattern, which is the most common pattern in term pregnancy.
Fig. 3
Fig. 3. Illustrations of intrarenal vascularity, as observed by 2D- ultrasound and Duplex sonography. Panel A shows the standard view of the kidney, scanned in transverse position at the level just above the renal hilus. The intrarenal pyelon can be identified easily. The interlobar vessels are located between the pyelon and the renal cortex. Colour Doppler imaging, as illustrated in panel B, allows distinguishing interlobar arteries (red) from veins (blue). Panel C illustrates the typical biphasic pattern of renal interlobar veins, which is the most common pattern in non-pregnant individuals and during early and midgestation. Panel D shows the monophasic pattern, which is very common in term pregnancies. Panel E illustrates a flat pattern, which is frequently found during urological obstruction.
Fig. 4
Fig. 4. Graphical illustration of serial measurements of Renal Interlobar Vein Impedance Index (RIVI) (upper panel) and Hepatic Vein A (HVA) velocity (lower panel) at 2-weeks interval from preconception (A) or early pregnancy (B) until term. As is shown, RIVI measurements of both kidneys show a slow pattern of oscillation with the highest values intermittently observed in the left or right kidney. This oscillation is present both during the normal menstrual cycle, marked as the interval between menstrual period 1 (P1) and menstrual period 2 (P2), as during pregnancy (3 to 37 w). In the course of pregnancy, RIVI decreases and at term, right renal RIVI values are lower than those from the left kidney. This is presented more clearly in Figure 5. Simultaneously, HVA-velocities shift from positive values, reflecting triphasic HV Doppler wave patterns with blood flowing into the direction of the liver during atrial contraction, to negative values, representing biphasic or flat HV Doppler wave patterns with blood flowing into direction of the heart. In this woman, the conversion from backward to forward flow relative to the heart occurs around 26 weeks. She also shows a transient reversal to positive HVA-values, at 32 weeks, which become negative again afterwards. The latter illustrates the intra-individual variation of HV Doppler wave patterns during uneventful third trimester pregnancy.
Fig. 5
Fig. 5. Illustration of serial measurements of Renal Interlobar Vein (RIV) Impedance Index (RIVI) at weekly intervals in a non-pregnant individual (upper panel), and during uncomplicated third trimester pregnancy (lower panel). During the third trimester of pregnancy, right RIVI values are consistently lower than those at the left kidney, and the pattern of oscillation, as illustated in figure 4, seems to be less pronounced than in the non-pregnant woman.

Similar articles

Cited by

References

    1. Abramowicz JS, Sheiner E. Ultrasound of the placenta: a systematic approach. Part II: functional assessment (Doppler) Placenta. 2008;29:921–929. - PubMed
    1. Ahmed K, Sampath R, Khan MS. Current trends in the diagnosis and management of renal nutcracker syndrome: a review. Eur J Vasc Endovasc Surg. 2006;31:410–416. - PubMed
    1. Bateman GA, Cuganesan R. Renal vein Doppler sonography of obstructive uropathy. AJR Am J Roentgenol. 2002;178:921–925. - PubMed
    1. Bateman GA, Giles W, England SL. Renal venous Doppler sonography in preeclampsia. J Ultrasound Med. 2004;23:1607–1611. - PubMed
    1. Berne R, Levy M. Berne R, Levy M, editors. Cardiovascular physiology. London: The C.V. Mosby Company; 2001. Control of cardiac output: coupling of heart and blood vessels; pp. 199–226.

LinkOut - more resources