Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep;171(9):4821-30.
doi: 10.1128/jb.171.9.4821-4830.1989.

Rhizobium leguminosarum exopolysaccharide mutants: biochemical and genetic analyses and symbiotic behavior on three hosts

Affiliations

Rhizobium leguminosarum exopolysaccharide mutants: biochemical and genetic analyses and symbiotic behavior on three hosts

R Diebold et al. J Bacteriol. 1989 Sep.

Abstract

Ten independently generated mutants of Rhizobium leguminosarum biovar phaseoli CFN42 isolated after Tn5 mutagenesis formed nonmucoid colonies on all agar media tested and lacked detectable production of the normal acidic exopolysaccharide in liquid culture. The mutants were classified into three groups. Three mutants harbored Tn5 insertions on a 3.6-kilobase-pair EcoRI fragment and were complemented to have normal exopolysaccharide production by cosmids that shared an EcoRI fragment of this size from the CFN42 genome. The Tn5 inserts of five other mutants appeared to be located on a second, slightly smaller EcoRI fragment. Attempts to complement mutants of this second group with cloned DNA were unsuccessful. The mutations of the other two mutants were located in apparently adjacent EcoRI fragments carried on two cosmids that complemented those two mutants. The latter two mutants also lacked O-antigen-containing lipopolysaccharides and induced underdeveloped nodules that lacked nitrogenase activity on bean plants. The other eight mutants had normal lipopolysaccharides and wild-type symbiotic proficiencies on bean plants. Mutants in each of these groups were mated with R. leguminosarum strains that nodulated peas (R. leguminosarum biovar viciae) or clovers (R. leguminosarum biovar trifolii). Transfer of the Tn5 mutations resulted in exopolysaccharide-deficient R. leguminosarum biovar viciae or R. leguminosarum biovar trifolii transconjugants that were symbiotically deficient in all cases. These results support earlier suggestions that successful symbiosis with peas or clovers requires that rhizobia be capable of acidic exopolysaccharide production, whereas symbiosis with beans does not have this requirement.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Bacteriol. 1985 Jun;162(3):950-9 - PubMed
    1. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347-51 - PubMed
    1. J Bacteriol. 1987 Nov;169(11):4923-8 - PubMed
    1. Anal Biochem. 1973 Aug;54(2):484-9 - PubMed
    1. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6231-5 - PubMed

Publication types

LinkOut - more resources