Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec 12:11:162.
doi: 10.1186/1743-0003-11-162.

Contributions of lower extremity kinematics to trunk accelerations during moderate treadmill running

Affiliations

Contributions of lower extremity kinematics to trunk accelerations during moderate treadmill running

Timothy R Lindsay et al. J Neuroeng Rehabil. .

Abstract

Background: Trunk accelerations during running provide useful information about movement economy and injury risk. However, there is a lack of data regarding the key biomechanical contributors to these accelerations. The purpose was to establish the biomechanical variables associated with root mean square (RMS) accelerations of the trunk.

Methods: Eighteen healthy males (24.0 ± 4.2 yr; 1.78 ± 0.07 m; 79.7 ± 14.8 kg) performed treadmill running with high resolution accelerometer measurement at the lumbar spine and full-body optical motion capture. We collected 60 sec of data at three speeds (2.22, 2.78, 3.33 m ∙ s(-1)). RMS was calculated for medio-lateral (ML), anterio-posterior (AP), vertical (VT), and the resultant Euclidean scalar (RES) acceleration. From motion capture, we calculated 14 kinematic variables, including mean sagittal plane joint angles at foot contact, mid-stance, and toe-off. Principal components analysis (PCA) was used to form independent components comprised of combinations of the original variables. Stepwise regressions were performed on the original variables and the components to determine contributions to RMS acceleration in each axis.

Results: Significant speed effects were found for RMS-accelerations in all axes (p < 0.05). Regressions of the original variables indicated from 4 to 5 variables associated with accelerations in each axis (R2 = 0.71 to 0.82, p < 0.001). The most prominent contributing variables were associated with the late flight and early stance phase. PCA reduced the data into four components. Component 1 included all hip angles before mid-stance and component 2 was primarily associated with propulsion. Regressions indicated key contributions from components 1 and 2 to ML, VT, and RES acceleration (p < 0.05).

Conclusions: The variables with highest contribution were prior to mid-stance and mechanically relate to shock absorption and attenuation of peak forces. Trunk acceleration magnitude is associated with global running variables, ranging from energy expenditure to forces lending to the mechanics of injury. These data begin to delineate running gait events and offer relationships of running mechanics to those structures more proximal in the kinetic chain. These relationships may provide insight for technique modification to maximize running economy or prevent injury.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Predicted RMS acceleration versus measured RMS acceleration values. Graphs indicate: (a) ML, b) AP, c) VT, and d) RES. Each graph includes data from all three speeds. Most biomechanical variables did not show a speed effect.

References

    1. Sport Business Research Network [http://www.sbrnet.com/research.asp?subRID=512] []
    1. Van Gent RN, Siem D, van Middelkoop M, van Os AG, Bierma-Zeinstra SMA, Koes BW. Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. Br J Sports Med. 2007;41:469–480. doi: 10.1136/bjsm.2006.033548. - DOI - PMC - PubMed
    1. Ghani Zadeh Hesar N, Van Ginckel A, Cools A, Peersman W, Roosen P, De Clercq D, Witvrouw E. A prospective study on gait-related intrinsic risk factors for lower leg overuse injuries. Br J Sports Med. 2009;43:1057–1061. doi: 10.1136/bjsm.2008.055723. - DOI - PubMed
    1. Hreljac A. Etiology, prevention, and early intervention of overuse injuries in runners: a biomechanical perspective. Phys Med Rehabil Clin N Am. 2005;16:651–667. doi: 10.1016/j.pmr.2005.02.002. - DOI - PubMed
    1. Messier SP, Legault C, Schoenlank CR, Newman JJ, Martin DF, DeVita P. Risk factors and mechanisms of knee injury in runners. Med Sci Sports Exerc. 2008;40:1873–1879. doi: 10.1249/MSS.0b013e31817ed272. - DOI - PubMed