Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Nov;34(6):586-97.
doi: 10.1016/j.semnephrol.2014.09.005.

New insights into the FGF23-Klotho axis

Affiliations
Review

New insights into the FGF23-Klotho axis

Hannes Olauson et al. Semin Nephrol. 2014 Nov.

Abstract

Abnormal mineral metabolism is a hallmark in patients with advanced chronic kidney disease (CKD). Hyperphosphatemia, and the homeostatic mechanisms controlling phosphate metabolism, have received particular attention over the past decade. The phosphate-regulating hormone fibroblast growth factor-23 (FGF23) was discovered through studies of rare hypophosphatemic disorders, whereas Klotho, which subsequently turned out to be a co-receptor for FGF23, was identified in a mouse model showing hyperphosphatemia and multiple aging-like traits. The FGF23-Klotho endocrine axis is a pivotal regulator of mineral metabolism. In CKD, early onset of Klotho deficiency contributes to renal FGF23 resistance and a maladaptive increase in circulating FGF23. FGF23 is an early biomarker of renal injury and increased FGF23 predicts adverse clinical outcomes, in particular cardiovascular disease. A paradigm of FGF23 excess and Klotho deficiency is proposed, in which FGF23 preferentially stimulates left ventricular hypertrophy, and loss of Klotho augments fibrosis, endothelial dysfunction, and vascular calcification. The clinical benefit of FGF23 and Klotho measurements remain uncertain, nevertheless, the FGF23-Klotho axis is a solid candidate for a novel diagnostic and therapeutic target in CKD.

Keywords: FGF-23; Fibroblast growth factor-23; calcium; chronic kidney disease; parathyroid hormone; phosphate; vitamin D.

PubMed Disclaimer

MeSH terms