Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb;20(1):184-97.
doi: 10.1016/j.media.2014.11.005. Epub 2014 Nov 24.

Spatially variant noise estimation in MRI: a homomorphic approach

Affiliations

Spatially variant noise estimation in MRI: a homomorphic approach

Santiago Aja-Fernández et al. Med Image Anal. 2015 Feb.

Abstract

The reliable estimation of noise characteristics in MRI is a task of great importance due to the influence of noise features in extensively used post-processing algorithms. Many methods have been proposed in the literature to retrieve noise features from the magnitude signal. However, most of them assume a stationary noise model, i.e., the features of noise do not vary with the position inside the image. This assumption does not hold when modern scanning techniques are considered, e.g., in the case of parallel reconstruction and intensity correction. Therefore, new noise estimators must be found to cope with non-stationary noise. Some methods have been recently proposed in the literature. However, they require multiple acquisitions or extra information which is usually not available (biophysical models, sensitivity of coils). In this work we overcome this drawback by proposing a new method that can accurately estimate the non-stationary parameters of noise from just a single magnitude image. In the derivation, we considered the noise to follow a non-stationary Rician distribution, since it is the most common model in real acquisitions (e.g., SENSE reconstruction), though it can be easily generalized to other models. The proposed approach makes use of a homomorphic separation of the spatially variant noise in two terms: a stationary noise term and one low frequency signal that correspond to the x-dependent variance of noise. The non-stationary variance of noise is then estimated by a low pass filtering with a Rician bias correction. Results in real and synthetic experiments evidence the better performance and the lowest error variance of the proposed methodology when compared to the state-of-the-art methods.

Keywords: Homomorphic filtering; Noise estimation; Non-stationarity noise; Parallel imaging; SENSE.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms