Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase

In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010.
[updated ].
Affiliations
Review

Inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase

Frank J. Schoenen et al.

Excerpt

Malaria is one of the most prevalent human parasitic diseases and is a global health issue accounting for >600,000 deaths annually. For survival, the Plasmodium falciparum (Pf) malaria parasite requires the action of a number of metallo-aminopeptidases, including PfM1MAA (membrane alanine aminopeptidase), PfM17LAP (leucine aminopeptidase), and PfM18AAP (aspartyl aminopeptidase). Each enzyme displays restricted amino acid specificity, and they are thought to act in concert to degrade proteins (i.e., host erythrocyte hemoglobin) that the parasite uses to generate a pool of amino acids which are employed as building blocks for the synthesis of its own proteins. Since there were very few small-molecule inhibitors of PfM17LAP and no selective inhibitors relative to PfM1AAP (or PfM18AAP), we set out to identify new potent and selective small-molecule inhibitors of this enzyme. Biochemical assays employing enzymatically active recombinant PfM17LAP (rPfM17LAP), as well as recombinant Fasciola hepatica cathepsin L1 (rFhCTSL1), rPfM1MAA, rPfM18AAP, and human M17LAP (rhuM17), and cell-based parasite growth inhibition and cytotoxicity assays were used to identify CID 2466 (from the NIH MLSMR) as a viable starting point for SAR analysis. Three rounds of structure-activity relationship studies were performed to generate a panel of probe candidate compounds. Ultimately, the compound hit, CID 2466, also known as bufexamac, was nominated as the probe ML392. When the probe and analogues are used as recommended, they are “fit-for-purpose” and should be useful for advancing the search for new antimalarial drugs directed at PfM17LAP.

PubMed Disclaimer

References

    1. Workman P, Collins I. Probing the Probes: Fitness Factors for Small Molecule Tools. Chemistry & Biology. 2010;17:561–577. - PMC - PubMed
    1. McGowan S, Porter CJ, Lowther J, Stack CM, Golding SJ, Skinner-Adams TS, Trenholme KR, Teuscher F, Donnelly SM, Grembecka J, Mucha A, Kafarski P, DeGori R, Buckle AM, Gardiner DL, Whisstock JC, Dalton JP. Structural basis for inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc. Natl. Acad. Sci. USA. 2009;106:2537–2542. - PMC - PubMed
    1. McGowan S, Oellig CA, Birrul WA, Cardoc-Davies TT, Stack CM, Lowther J, Skinner-Adams T, Mucha A, Kafarski P, Grembecka J, Trenholme KR, Buckle AM, Gardiner DL, Dalton JP, Whisstock JC. Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidasesProc. Natl. Acad. Sci. USA. 2010;107:2449–2454. - PMC - PubMed
    1. Collins PR, Stack CM, O’Neill SM, Doyle S, Ryan T, Brennan GP, Mousley A, Stewart M, Maule AG, Dalton JP, Donnelly S. Cathepsin L1, the major protease involved in liver fluke (Fasciola hepatica) virulence: propeptide cleavage sites and autoactivation of the zymogen secreted from gastrodermal cells. J. Biol. Chem. 2004;279:17038–17046. - PubMed
    1. Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon A-M, Schlegl J, Abraham Y, Becher I, Bergamini G, Boesche M, Delling M, Dumpelfeld B, Eberhard D, Huthmacher C, Mathieson T, Poeckel D, Reader V, Strunk K, Sweetman G, Kruse U, Neunauer G, Ramsden NG, Drewes G. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nature Biotechnology. 2011;29:255–265. - PubMed

LinkOut - more resources