Update on time-of-flight PET imaging
- PMID: 25525181
- PMCID: PMC4287223
- DOI: 10.2967/jnumed.114.145029
Update on time-of-flight PET imaging
Abstract
Time-of-flight (TOF) PET was initially introduced in the early days of PET. The TOF PET scanners developed in the 1980s had limited sensitivity and spatial resolution, were operated in 2-dimensional mode with septa, and used analytic image reconstruction methods. The current generation of TOF PET scanners has the highest sensitivity and spatial resolution ever achieved in commercial whole-body PET, is operated in fully-3-dimensional mode, and uses iterative reconstruction with full system modeling. Previously, it was shown that TOF provides a gain in image signal-to-noise ratio that is proportional to the square root of the object size divided by the system timing resolution. With oncologic studies being the primary application of PET, more recent work has shown that in modern TOF PET scanners there is an improved tradeoff between lesion contrast, image noise, and total imaging time, leading to a combination of improved lesion detectability, reduced scan time or injected dose, and more accurate and precise lesion uptake measurement. Because the benefit of TOF PET is also higher for heavier patients, clinical performance is more uniform over all patient sizes.
Keywords: lesion detection; lesion uptake; scan time; time-of-flight PET.
© 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Figures







References
-
- Anger HO. Survey of Radioisotope Cameras. ISA Trans. 1966;5:311.
-
- Brownell GL, Burnham CA, Wilensky S, Aronow S, Kazemi H, Streider D. Medical Radioisotope Scintigraphy. Vol. 1. Vienna, Austria: IAEA (Proceedings Series); 1969. New developments in positron scintigraphy and the application of cyclotron produced positron emitters; pp. 163–176.
-
- Budinger TF. Instrumentation trends in nuclear medicine. Semin Nucl Med. 1977;7:285–297. - PubMed
-
- Ter-Pogossian MM, Ficke DC, Hood JT, Sr, Yamamoto M, Mullani NA. PETT VI: A positron emission tomograph utilizing cesium fluoride scintillation detectors. J Comput Assist Tomogr. 1982;6:125–133. - PubMed
-
- Ter-Pogossian M, Ficke D, Yamamoto M, JT H. Super PETT I: A Positron Emission Tomograph utilizing photon time-of-flight information. IEEE Trans Med Imag. 1982;M1-1:179–187. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources