Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec 20:15:147.
doi: 10.1186/s12863-014-0147-y.

Genetic association between germline JAK2 polymorphisms and myeloproliferative neoplasms in Hong Kong Chinese population: a case-control study

Genetic association between germline JAK2 polymorphisms and myeloproliferative neoplasms in Hong Kong Chinese population: a case-control study

Su Pin Koh et al. BMC Genet. .

Abstract

Background: Myeloproliferative neoplasms (MPNs) are a group of haematological malignancies that can be characterised by a somatic mutation (JAK2V617F). This mutation causes the bone marrow to produce excessive blood cells and is found in polycythaemia vera (~95%), essential thrombocythaemia and primary myelofibrosis (both ~50%). It is considered as a major genetic factor contributing to the development of these MPNs. No genetic association study of MPN in the Hong Kong population has so far been reported. Here, we investigated the relationship between germline JAK2 polymorphisms and MPNs in Hong Kong Chinese to find causal variants that contribute to MPN development. We analysed 19 tag single nucleotide polymorphisms (SNPs) within the JAK2 locus in 172 MPN patients and 470 healthy controls. Three of these 19 SNPs defined the reported JAK2 46/1 haplotype: rs10974944, rs12343867 and rs12340895. Allele and haplotype frequencies were compared between patients and controls by logistic regression adjusted for sex and age. Permutation test was used to correct for multiple comparisons. With significant findings from the 19 SNPs, we then examined 76 additional SNPs across the 148.7-kb region of JAK2 via imputation with the SNP data from the 1000 Genomes Project.

Results: In single-marker analysis, 15 SNPs showed association with JAK2V617F-positive MPNs (n = 128), and 8 of these were novel MPN-associated SNPs not previously reported. Exhaustive variable-sized sliding-window haplotype analysis identified 184 haplotypes showing significant differences (P < 0.05) in frequencies between patients and controls even after multiple-testing correction. However, single-marker alleles exhibited the strongest association with V617F-positive MPNs. In local Hong Kong Chinese, rs12342421 showed the strongest association signal: asymptotic P = 3.76 × 10-15, empirical P = 2.00 × 10-5 for 50,000 permutations, OR = 3.55 for the minor allele C, and 95% CI, 2.59-4.87. Conditional logistic regression also signified an independent effect of rs12342421 in significant haplotype windows, and this independent effect remained unchanged even with the imputation of additional 76 SNPs. No significant association was found between V617F-negative MPNs and JAK2 SNPs.

Conclusion: With a large sample size, we reported the association between JAK2V617F-positive MPNs and 15 tag JAK2 SNPs and the association of rs12342421 being independent of the JAK2 46/1 haplotype in Hong Kong Chinese population.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Linkage disequilibrium pattern for 19 JAK2 SNPs for V617F -positive MPN cases and healthy controls. Linkage disequilibrium plots were generated utilising the Haploview software. The values in the boxes indicate the r2 values between the respective pairs of SNPs and the empty boxes represent those with r2 = 1.0. Haplotype blocks were defined by solid spine of linkage disequilibrium.
Figure 2
Figure 2
Linkage disequilibrium pattern for 95 JAK2 SNPs for V617F -positive MPN cases and healthy controls. Linkage disequilibrium plots were generated utilising the Haploview software. The values in the boxes indicate the r2 values between the respective pairs of SNPs and the empty boxes represent those with r2 = 1.0. Haplotype blocks were defined by solid spine of linkage disequilibrium.

References

    1. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008;22(1):14–22. doi: 10.1038/sj.leu.2404955. - DOI - PubMed
    1. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24(6):1128–1138. doi: 10.1038/leu.2010.69. - DOI - PMC - PubMed
    1. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, D'Andrea A, Frohling S, Dohner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–397. doi: 10.1016/j.ccr.2005.03.023. - DOI - PubMed
    1. Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, Score J, Seear R, Chase AJ, Grand FH, White H, Zoi C, Loukopoulos D, Terpos E, Vervessou EC, Schultheis B, Emig M, Ernst T, Lengfelder E, Hehlmann R, Hochhaus A, Oscier D, Silver RT, Reiter A, Cross NC. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005;106(6):2162–2168. doi: 10.1182/blood-2005-03-1320. - DOI - PubMed
    1. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–1061. doi: 10.1016/S0140-6736(05)71142-9. - DOI - PubMed

Publication types

LinkOut - more resources