Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan 21;137(2):893-7.
doi: 10.1021/ja510946c. Epub 2015 Jan 6.

Highly ordered n/p-co-assembled materials with remarkable charge mobilities

Affiliations

Highly ordered n/p-co-assembled materials with remarkable charge mobilities

Javier López-Andarias et al. J Am Chem Soc. .

Abstract

Controlling self-organization and morphology of chemical architectures is an essential challenge in the search for higher energy-conversion efficiencies in a variety of optoelectronic devices. Here, we report a highly ordered donor/acceptor functional material, which has been obtained using the principle of ionic self-assembly. Initially, an electron donor π-extended tetrathiafulvalene and an electron-acceptor perylene-bisimide were self-organized separately obtaining n- and p-nanofibers at the same scale. These complementary n- and p-nanofibers are endowed with ionic groups with opposite charges on their surfaces. The synergic interactions establish periodic alignments between both nanofibers resulting in a material with alternately segregated donor/acceptor nanodomains. Photoconductivity measurements show values for these n/p-co-assembled materials up to 0.8 cm(2) V(-1) s(-1), confirming the effectiveness in the design of these heterojunction structures. This easy methodology offers great possibilities to achieve highly ordered n/p-materials for potential applications in different areas such as optoelectonics and photovoltaics.

PubMed Disclaimer

Publication types

LinkOut - more resources