Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Dec 9:8:230.
doi: 10.3389/fnsys.2014.00230. eCollection 2014.

Optogenetic dissection of medial prefrontal cortex circuitry

Affiliations
Review

Optogenetic dissection of medial prefrontal cortex circuitry

Danai Riga et al. Front Syst Neurosci. .

Abstract

The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.

Keywords: addiction; cognition; depression; fear; memory; optogenetics; prefrontal cortex.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Optogenetic evidence for the involvement of the mPFC in depressive-like behavior and anxiety. Yellow flash: photoinhibition; blue flash: photoactivation; ↑ = pro-depressive/anxiogenic effects; ↓ = antidepressant/anxiolytic effects. 1Covington et al. (2010): photoactivation increased sucrose preference and restored social interaction in defeat-susceptible mice. 2Kumar et al. (2013): photoactivation layer V pyramidal cells decreased immobility FST in naïve animals. 3Kumar et al. (2013): photoactivation layer V pyramidal cells increased time in open arms EPM test in defeated animals. 4Warden et al. (2012): photoactivation of mPFC-LHb projection promoted immobility FST in naïve animals. 5Warden et al. (2012): photoactivation of mPFC-DRN projection decreased immobility FST in naïve animals. 6Challis et al. (2014): photoactivation of vmPFC-DRN projection reduced social interaction in naïve animals. 7Challis et al. (2014): photoinhibition of vmPFC-DRN projection prevented social withdrawal in defeated animals. 8Vialou et al. (2014): photoactivation of dmPFC-Nac projection prevented social withdrawal. 9Vialou et al. (2014): photoactivation of dmPFC-BLA projection increased time in open arms EPM test. 10Chaudhury et al. (2013): photoinhibition of VTA-mPFC DA projection reduced social interaction in sub-threshold defeat animals. 11Friedman et al. (2014): photoactivation of VTA-mPFC DA projection restored social interaction in defeat-susceptible mice. 12Gunaydin et al. (2014): photoactivation of VTA-mPFC DA projection evoked anxiety-like behavior and place avoidance in naïve mice. dmPFC: dorsal medial prefrontal cortex; vmPFC: ventral medial prefrontal cortex; NAcc: nucleus accumbens core; NAcsh: nucleus accumbens shell; LHb: lateral habenula; DRN: dorsal raphe nucleus; BLA: basolateral amygdala; VTA: ventral tegmental area.
Figure 2
Figure 2
Optogenetic evidence for the involvement of the mPFC in addictive behavior. Yellow flash: photoinhibition; blue flash: photoactivation. ↑ = enhanced drug taking/seeking; ↓ = reduced drug taking/seeking. Optogenetic manipulations indicate that the circuitry that regulates drug taking (when the drug is available) differs from the circuitry that mediates drug seeking (in absence of the drug). (A) Manipulation of drug taking. 1Chen et al. (2013): photoactivation PLC diminished compulsive cocaine taking in aversion resistant rats. 2Chen et al. (2013) and Martín-García et al. (2014): photoinhibition PLC evoked compulsive cocaine taking in aversion sensitive rats and resumption of cocaine intake in rats with history of high-frequency self-administration. 3Seif et al. (2013): photoinhibition of dmPFC-NAcc projection reduced alcohol intake paired with aversive stimulus. (B) Manipulation of drug seeking. 4Stefanik et al. (2013) and Martín-García et al. (2014): photoinhibition dmPFC attenuated cocaine seeking. 5Stefanik and Kalivas (2013): photoinhibition of BLA-dmPFC projection reduced reinstatement of cocaine seeking. 6Van den Oever et al. (2013): photoactivation vmPFC facilitated extinction of remote, but not recent, cocaine memory. 7Van den Oever et al. (2013): photoinhibition vmPFC impaired recall of recent cocaine memory, but prevented extinction of remote cocaine memory. 8Ma et al. (2014): photoactivation (1 Hz) evoked LTD in vmPFC-NAcsh projection reversed cocaine-induced synaptic adaptation and enhanced subsequent cocaine seeking. 9Pascoli et al. (2012): photoactivation (1 Hz) of vmPFC-NAcsh projection reversed cocaine-induced synaptic adaptation and locomotor sensitization. 10Pascoli et al. (2014): photoactivation (13 Hz) of vmPFC-NAcsh projection reversed cocaine-induced synaptic adaptation and abolished cocaine seeking. 11Ma et al. (2014): photoactivation (1 Hz) evoked LTD in dmPFC-NAcc projection reversed cocaine-induced synaptic adaptation and decreased subsequent cocaine seeking. 12Stefanik et al. (2013): photoinhibition of PLC-NAc core projection attenuated cocaine-primed reinstatement of cocaine seeking.

References

    1. Airan R. D., Thompson K. R., Fenno L. E., Bernstein H., Deisseroth K. (2009). Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029. 10.1038/nature07926 - DOI - PubMed
    1. Albert P. R. (2014). Light up your life: optogenetics for depression? J. Psychiatry Neurosci. 39, 3–5. 10.1503/jpn.130267 - DOI - PMC - PubMed
    1. Albert P. R., Vahid-Ansari F., Luckhart C. (2014). Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front. Behav. Neurosci. 8:199. 10.3389/fnbeh.2014.00199 - DOI - PMC - PubMed
    1. Alitto H. J., Usrey W. M. (2003). Corticothalamic feedback and sensory processing. Curr. Opin. Neurobiol. 13, 440–445. 10.1016/s0959-4388(03)00096-5 - DOI - PubMed
    1. Allsop S. A., Vander Weele C. M., Wichmann R., Tye K. M. (2014). Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front. Behav. Neurosci. 8:241. 10.3389/fnbeh.2014.00241 - DOI - PMC - PubMed