Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec 24:14:1322.
doi: 10.1186/1471-2458-14-1322.

Spatial clustering of physical activity and obesity in relation to built environment factors among older women in three U.S. states

Affiliations

Spatial clustering of physical activity and obesity in relation to built environment factors among older women in three U.S. states

Kosuke Tamura et al. BMC Public Health. .

Abstract

Background: Identifying spatial clusters of chronic diseases has been conducted over the past several decades. More recently these approaches have been applied to physical activity and obesity. However, few studies have investigated built environment characteristics in relation to these spatial clusters. This study's aims were to detect spatial clusters of physical activity and obesity, examine whether the geographic distribution of covariates affects clusters, and compare built environment characteristics inside and outside clusters.

Methods: In 2004, Nurses' Health Study participants from California, Massachusetts, and Pennsylvania completed survey items on physical activity (N = 22,599) and weight-status (N = 19,448). The spatial scan statistic was utilized to detect spatial clustering of higher and lower likelihood of obesity and meeting physical activity recommendations via walking. Clustering analyses and tests that adjusted for socio-demographic and health-related variables were conducted. Neighborhood built environment characteristics for participants inside and outside spatial clusters were compared.

Results: Seven clusters of physical activity were identified in California and Massachusetts. Two clusters of obesity were identified in Pennsylvania. Overall, adjusting for socio-demographic and health-related covariates had little effect on the size or location of clusters in the three states with a few exceptions. For instance, adjusting for husband's education fully accounted for physical activity clusters in California. In California and Massachusetts, population density, intersection density, and diversity and density of facilities in two higher physical activity clusters were significantly greater than in neighborhoods outside of clusters. In contrast, in two other higher physical activity clusters in California and Massachusetts, population density, diversity of facilities, and density of facilities were significantly lower than in areas outside of clusters. In Pennsylvania, population density, intersection density, diversity of facilities, and certain types of facility density inside obesity clusters were significantly lower compared to areas outside the clusters.

Conclusions: Spatial clustering techniques can identify high and low risk areas for physical activity and obesity. Although covariates significantly differed inside and outside the clusters, patterns of differences were mostly inconsistent. The findings from these spatial analyses could eventually facilitate the design and implementation of more resource-efficient, geographically targeted interventions for both physical activity and obesity.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Spatial clusters of higher and lower likelihood of women meeting physical activity recommendations in California. The red color represents higher physical activity levels (clusters 1 and 2), whereas blue represents lower physical activity levels (clusters 3 and 4). All clusters are from unadjusted tests. Since the analyses were conducted at the county-level, clusters were visualized using a county boundary. The radius for each cluster was reported in Table  1.
Figure 2
Figure 2
Spatial clusters of higher and lower likelihood of women meeting physical activity recommendations in Massachusetts. The red color represents higher physical activity levels (clusters 5 and 6), whereas blue indicates a lower physical activity level (cluster 7). All clusters were from unadjusted tests. Since the analyses were conducted at the county-level, clusters were visualized using a county boundary. The radius for each cluster was reported in Table  1.
Figure 3
Figure 3
Spatial clusters of higher and lower likelihood of obesity in Pennsylvania. The red color represents a higher obesity level (cluster 8), whereas blue indicates a lower obesity level (cluster 9). Both clusters are from unadjusted tests. Since the analyses were conducted at the county-level, clusters were visualized using a county boundary. The radius for each cluster was reported in Table  1.

References

    1. Physical Activity Guidelines Advisory Committee . Physical Activity Guidelines Advisory Committee Report. Washington, DC: U.S. Department of Health and Human Services; 2008. - PubMed
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188. doi: 10.1249/mss.0b013e31815a51b3. - DOI - PubMed
    1. WHO Global Infobase. https://apps.who.int/infobase/Index.aspx
    1. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303(3):235–241. doi: 10.1001/jama.2009.2014. - DOI - PubMed
    1. Paterson DH, Jones GR, Rice CL. Ageing and physical activity: evidence to develop exercise recommendations for older adults. Can J Public Health. 2007;98(Suppl 2):S69–108. - PubMed
Pre-publication history
    1. The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2458/14/1322/prepub

Publication types