Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989 Sep-Oct;10(5):593-602.
doi: 10.1016/0197-4580(89)90143-7.

Excitatory amino acids and Alzheimer's disease

Affiliations
Free article
Review

Excitatory amino acids and Alzheimer's disease

J T Greenamyre et al. Neurobiol Aging. 1989 Sep-Oct.
Free article

Abstract

Excitatory amino acids (EAA) such as glutamate and aspartate are major transmitters of the cerebral cortex and hippocampus, and EAA mechanisms appear to play a role in learning and memory. Anatomical and biochemical evidence suggests that there is both pre- and postsynaptic disruption of EAA pathways in Alzheimer's disease. Dysfunction of EAA pathways could play a role in the clinical manifestations of Alzheimer's disease, such as memory loss and signs of cortical disconnection. Furthermore, EAA might be involved in the pathogenesis of Alzheimer's disease, by virtue of their neurotoxic (excitotoxic) properties. Circumstantial evidence raises the possibility that the EAA system may partially determine the distribution of pathology in Alzheimer's disease and may be important in producing the neurofibrillary tangles, RNA reductions and dendritic changes which characterize this devastating disorder. In this article, we will review the evidence suggesting a role for EAA in the clinical manifestations and pathogenesis of Alzheimer's disease.

PubMed Disclaimer

Publication types

MeSH terms