Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar;205(4):1608-1618.
doi: 10.1111/nph.13223. Epub 2014 Dec 24.

Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing

Affiliations

Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing

Jane Oja et al. New Phytol. 2015 Mar.

Abstract

Orchid mycorrhizal (OrM) symbionts play a key role in the growth of orchids, but the temporal variation and habitat partitioning of these fungi in roots and soil remain unclear. Temporal changes in root and rhizosphere fungal communities of Cypripedium calceolus, Neottia ovata and Orchis militaris were studied in meadow and forest habitats over the vegetation period by using 454 pyrosequencing of the full internal transcribed spacer (ITS) region. The community of typical OrM symbionts differed by plant species and habitats. The root fungal community of N. ovata changed significantly in time, but this was not observed in C. calceolus and O. militaris. The rhizosphere community included a low proportion of OrM symbionts that exhibited a slight temporal turnover in meadow habitats but not in forests. Habitat differences in OrM and all fungal associates are largely attributable to the greater proportion of ectomycorrhizal fungi in forests. Temporal changes in OrM fungal communities in roots of certain species indicate selection of suitable fungal species by plants. It remains to be elucidated whether these shifts depend on functional differences inside roots, seasonality, climate or succession.

Keywords: Ceratobasidiaceae; Orchidaceae; Sebacinales; Tulasnellaceae; fungal community composition; next-generation sequencing; primer specificity; temporal dynamics.

PubMed Disclaimer

References

    1. Abadie JC, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse MA. 2006. Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Canadian Journal of Botany 84: 1462-1477.
    1. Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T et al. 2010. The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytologist 186: 281-285.
    1. Bayman P, Otero JT. 2006. Microbial endophytes of orchid roots. In: Schulz B, Boyle C, Sieber T, eds. Microbial root endophytes. New York, NY, USA: Springer, 153-173.
    1. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology 10: 189.
    1. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ. 2004. Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proceedings of the Royal Society of London Series B - Biological Sciences 271: 1799-1806.

Publication types

Associated data