Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb;56(2):287-92.
doi: 10.2967/jnumed.114.148296. Epub 2014 Dec 31.

111In-cetuximab-F(ab')2 SPECT and 18F-FDG PET for prediction and response monitoring of combined-modality treatment of human head and neck carcinomas in a mouse model

Affiliations
Free article

111In-cetuximab-F(ab')2 SPECT and 18F-FDG PET for prediction and response monitoring of combined-modality treatment of human head and neck carcinomas in a mouse model

Laura K van Dijk et al. J Nucl Med. 2015 Feb.
Free article

Abstract

Treatment of head and neck squamous cell carcinomas with radiotherapy and the epidermal growth factor receptor (EGFR) inhibitor cetuximab shows an improved response in a subgroup of patients. The aim of this study was to noninvasively monitor treatment response by visualizing systemically accessible EGFR with (111)In-cetuximab-F(ab')2 while simultaneously evaluating tumor metabolism with (18)F-FDG PET during combined-modality treatment.

Methods: Eighty mice with patient-derived head and neck squamous cell carcinomas xenografts, SCCNij202 or SCCNij185, were imaged with SPECT/CT using (111)In-cetuximab-F(ab')2 (5 μg, 28 ± 6.1 MBq, 24 h after injection), followed by PET imaging with (18)F-FDG (9.4 ± 2.9 MBq, 1 h after injection). Scans were acquired on mice 10 d before treatment with either single-dose irradiation (10 Gy), cetuximab alone, or cetuximab-plus-irradiation combined or on untreated control mice. Scans were repeated 18 d after treatment. Tumor growth was monitored up to 120 d after treatment. EGFR expression was evaluated immunohistochemically.

Results: SCCNij202 responded to combined treatment (P < 0.01) and cetuximab treatment alone (P < 0.05) but not to irradiation alone (P = 0.13). SCCNij185 responded to combined treatment (P < 0.05) and irradiation (P < 0.05) but not to cetuximab treatment alone (P = 0.34). (111)In-cetuximab-F(ab')2 uptake (tumor-to-liver ratio, scan 2 - scan 1) predicted response to therapy. A positive response to treatment significantly correlated with a reduced tracer uptake in the tumor in the second SPECT scan, compared with the first scan (P < 0.005 and <0.05 for SCCNij202 and SCCNij185, respectively). Resistance to therapy was characterized by a significantly increased (111)In-cetuximab-F(ab')2 tumor uptake; tumor-to-liver ratio was 2.2 ± 0.6 to 3.5 ± 1.2, P < 0.01, for (irradiated) SCCNij202 and 1.4 ± 0.4 to 2.0 ± 0.3, P < 0.05, for (cetuximab-treated) SCCNij185, respectively. (18)F-FDG PET tumor uptake (maximum standardized uptake value, scan 2 - scan 1) correlated with tumor response for SCCNij202 (P < 0.01) but not for SCCNij185 (P = 0.66). EGFR fractions were significantly different: 0.9 ± 0.1 (SCCNij202) and 0.5 ± 0.1 (SCCNij185) (P < 0.001). The EGFR fraction was significantly lower for irradiated SCCNij202 tumors than for controls (P < 0.005).

Conclusion: (111)In-cetuximab-F(ab')2 predicted and monitored the effects of EGFR inhibition or irradiation during treatment in both head and neck carcinoma models investigated, whereas (18)F-FDG PET only correlated with tumor response in the SCCNij202 model. Thus, the additional value of the (111)In-cetuximab-F(ab')2 tracer is emphasized and the tracer can aid in evaluating future treatments with EGFR-targeted therapies.

Keywords: HNSCC; PET; SPECT; cetuximab; radiotherapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources