A survey of smart water quality monitoring system
- PMID: 25561262
- DOI: 10.1007/s11356-014-4026-x
A survey of smart water quality monitoring system
Abstract
The smart water quality monitoring, regarded as the future water quality monitoring technology, catalyzes progress in the capabilities of data collection, communication, data analysis, and early warning. In this article, we survey the literature till 2014 on the enabling technologies for the Smart Water Quality Monitoring System. We explore three major subsystems, namely the data collection subsystem, the data transmission subsystem, and the data management subsystem from the view of data acquiring, data transmission, and data analysis. Specifically, for the data collection subsystem, we explore selection of water quality parameters, existing technology of online water quality monitoring, identification of the locations of sampling stations, and determination of the sampling frequencies. For the data transmission system, we explore data transmission network architecture and data communication management. For the data management subsystem, we explore water quality analysis and prediction, water quality evaluation, and water quality data storage. We also propose possible challenges and future directions for each subsystem.
Similar articles
-
Optimal water quality monitoring network design for river systems.J Environ Manage. 2009 Jul;90(10):2987-98. doi: 10.1016/j.jenvman.2009.04.011. Epub 2009 Jun 6. J Environ Manage. 2009. PMID: 19501953
-
An early warning and control system for urban, drinking water quality protection: China's experience.Environ Sci Pollut Res Int. 2013 Jul;20(7):4496-508. doi: 10.1007/s11356-012-1406-y. Epub 2012 Dec 18. Environ Sci Pollut Res Int. 2013. PMID: 23247533
-
Quantitative risk-based approach for improving water quality management in mining.Environ Sci Technol. 2011 Sep 1;45(17):7459-64. doi: 10.1021/es201876c. Epub 2011 Aug 9. Environ Sci Technol. 2011. PMID: 21797262
-
Water quality monitoring strategies - A review and future perspectives.Sci Total Environ. 2016 Nov 15;571:1312-29. doi: 10.1016/j.scitotenv.2016.06.235. Epub 2016 Jul 8. Sci Total Environ. 2016. PMID: 27396312 Review.
-
New methods to monitor emerging chemicals in the drinking water production chain.J Environ Monit. 2010 Jan;12(1):80-9. doi: 10.1039/b912979k. Epub 2009 Nov 12. J Environ Monit. 2010. PMID: 20082002 Review.
Cited by
-
A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems.Sensors (Basel). 2020 Feb 19;20(4):1125. doi: 10.3390/s20041125. Sensors (Basel). 2020. PMID: 32092984 Free PMC article.
-
Mobile platform sampling for designing environmental sensor networks.Environ Monit Assess. 2018 Feb 9;190(3):130. doi: 10.1007/s10661-018-6510-0. Environ Monit Assess. 2018. PMID: 29427226
-
Optimisation in the Design of Environmental Sensor Networks with Robustness Consideration.Sensors (Basel). 2015 Nov 27;15(12):29765-81. doi: 10.3390/s151229765. Sensors (Basel). 2015. PMID: 26633392 Free PMC article.
-
The Ethics of Smart Stadia: A Stakeholder Analysis of the Croke Park Project.Sci Eng Ethics. 2019 Jun;25(3):737-769. doi: 10.1007/s11948-018-0033-5. Epub 2018 Mar 1. Sci Eng Ethics. 2019. PMID: 29497969
-
The use of multivariate statistical methods for optimization of the surface water quality network monitoring in the Paraopeba river basin, Brazil.Environ Monit Assess. 2018 Jul 28;190(8):491. doi: 10.1007/s10661-018-6873-2. Environ Monit Assess. 2018. PMID: 30056487
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources