Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1989 Dec 7;977(3):266-72.
doi: 10.1016/s0005-2728(89)80080-5.

Long-chain fatty acids act as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria

Affiliations
Comparative Study

Long-chain fatty acids act as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria

P Schönfeld et al. Biochim Biophys Acta. .

Abstract

The effect of long-chain fatty acids (LCFA) on respiration and transmembrane potential (delta psi) in the resting state, and the rate of delta psi dissipation [d delta psi/dt)i) was investigated with oligomycin-inhibited rat liver mitochondria using succinate (plus rotenone) as substrate. The results obtained were compared with those of classical protonophores such as 2,4-dinitrophenol (DNP) and 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB). The effects of oleate or palmitate and that of DNP or TTFB on respiration and delta psi can be described by a common force-flow relationship. These facts all in all are not compatible with a decoupler-type uncoupling mechanism of LCFA; still, they indicate that the latter are protonophores. Moreover, the oleate-induced increase in the rate of delta psi dissipation closely correlates with that in respiration, suggesting that the uncoupling activity and the protonophoric activity of LCFA are interrelated. Carboxyatractyloside (CAT) exerted only a small inhibitory effect on oleate-induced respiration and delta psi dissipation, indicating that the adenine nucleotide translocase contributes to the uncoupling effect of LCFA to a minor extent only. Proton transport through the lipid region of the membrane as mediated by permeation of the protonated and deprotonated forms of LCFA is interpreted as the main process of the uncoupling of LCFA.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources