Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production
- PMID: 25562287
- DOI: 10.1038/ncomms6881
Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production
Abstract
Titanium dioxide is a promising photocatalyst for water splitting, but it suffers from low visible light activity due to its wide band gap. Doping can narrow the band gap of titanium dioxide; however, new charge-carrier recombination centres may be introduced. Here we report the design of sub-10 nm rutile titanium dioxide nanoparticles, with an increased amount of surface/sub-surface defects to overcome the negative effects from bulk defects. Abundant defects can not only shift the top of the valence band of rutile titanium dioxide upwards for band-gap narrowing but also promote charge-carrier separation. The role of titanium(III) is to enhance, rather than initiate, the visible-light-driven water splitting. The sub-10 nm rutile nanoparticles exhibit the state-of-the-art activity among titanium dioxide-based semiconductors for visible-light-driven water splitting and the concept of ultra-small nanoparticles with abundant defects may be extended to the design of other robust semiconductor photocatalysts.
Similar articles
-
Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen.Photochem Photobiol Sci. 2011 Mar 2;10(3):355-60. doi: 10.1039/c0pp00154f. Epub 2010 Sep 3. Photochem Photobiol Sci. 2011. PMID: 20820674
-
Solar-Light-Driven Pure Water Splitting with Ultrathin BiOCl Nanosheets.Chemistry. 2015 Dec 7;21(50):18089-94. doi: 10.1002/chem.201503778. Epub 2015 Oct 14. Chemistry. 2015. PMID: 26463892
-
Water Splitting on Rutile TiO2 -Based Photocatalysts.Chemistry. 2018 Dec 10;24(69):18204-18219. doi: 10.1002/chem.201800799. Epub 2018 Jun 6. Chemistry. 2018. PMID: 29570871 Review.
-
Visible light water splitting using dye-sensitized oxide semiconductors.Acc Chem Res. 2009 Dec 21;42(12):1966-73. doi: 10.1021/ar9002398. Acc Chem Res. 2009. PMID: 19905000
-
Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria.Arch Immunol Ther Exp (Warsz). 2012 Aug;60(4):267-75. doi: 10.1007/s00005-012-0178-x. Epub 2012 Jun 8. Arch Immunol Ther Exp (Warsz). 2012. PMID: 22678625 Review.
Cited by
-
Photocatalytic glucose depletion and hydrogen generation for diabetic wound healing.Nat Commun. 2022 Sep 27;13(1):5684. doi: 10.1038/s41467-022-33475-7. Nat Commun. 2022. PMID: 36167814 Free PMC article.
-
Engineered disorder in CO2 photocatalysis.Nat Commun. 2022 Nov 23;13(1):7205. doi: 10.1038/s41467-022-34798-1. Nat Commun. 2022. PMID: 36418855 Free PMC article.
-
Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts.Nat Commun. 2022 Jul 22;13(1):4245. doi: 10.1038/s41467-022-32002-y. Nat Commun. 2022. PMID: 35869136 Free PMC article.
-
A Three-Dimensional Melamine Sponge Modified with MnOx Mixed Graphitic Carbon Nitride for Photothermal Catalysis of Formaldehyde.Molecules. 2022 Aug 16;27(16):5216. doi: 10.3390/molecules27165216. Molecules. 2022. PMID: 36014456 Free PMC article.
-
2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation.Nanomaterials (Basel). 2017 Mar 15;7(3):62. doi: 10.3390/nano7030062. Nanomaterials (Basel). 2017. PMID: 28336898 Free PMC article. Review.
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous