Regulation and function of stimulus-induced phosphorylation of MeCP2
- PMID: 25568644
- PMCID: PMC4283599
- DOI: 10.1007/s11515-014-1330-2
Regulation and function of stimulus-induced phosphorylation of MeCP2
Abstract
DNA methylation-dependent epigenetic regulation plays important roles in the development and function of the mammalian nervous system. MeCP2 is a key player in recognizing methylated DNA and interpreting the epigenetic information encoded in different DNA methylation patterns. Mutations in the MECP2 gene cause Rett syndrome, a devastating neurological disease that shares many features with autism. One interesting aspect of MeCP2 function is that it can be phosphorylated in response to diverse stimuli. Insights into the regulation and function of MeCP2 phosphorylation will help improve our understanding of how MeCP2 integrates environmental stimuli in neuronal nuclei to generate adaptive responses and may eventually lead to treatments for patients.
Keywords: MeCP2; Rett syndrome; phosphorylation.
Conflict of interest statement
Hongda Li and Qiang Chang declare that they have no conflict of interest.
Figures
References
-
- Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185–188. - PubMed
-
- Asaka Y, Jugloff DG, Zhang L, Eubanks JH, Fitzsimonds RM. Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis. 2006;21(1):217–227. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources