Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology
- PMID: 25568992
- DOI: 10.1097/AOG.0000000000000637
Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology
Abstract
Objective: To describe the clinical experience with noninvasive prenatal testing for fetal sex chromosomes using sequencing of maternal plasma cell-free DNA in a commercial laboratory.
Methods: A noninvasive prenatal testing laboratory data set was examined for samples in which fetal sex chromosomes were reported. Available clinical outcomes were reviewed.
Results: Of 18,161 samples with sex chromosome results, no sex chromosome aneuploidy was detected in 98.9% and the fetal sex was reported as XY (9,236) or XX (8,721). In 4 of 32 cases in which the fetal sex was reportedly discordant between noninvasive prenatal testing and karyotype or ultrasonogram, a potential biological reason for the discordance exists, including two cases of documented co-twin demise, one case of a maternal kidney transplant from a male donor, and one case of fetal ambiguous genitalia. In the remaining 204 samples (1.1%), one of four sex chromosome aneuploidies (monosomy X, XXX, XXY, or XYY) was detected. The frequency of false positive results for sex chromosome aneuploidies is a minimum of 0.26% and a maximum of 1.05%. All but one of the discordant sex chromosome aneuploidy results involved the X chromosome. In two putative false-positive XXX cases, maternal XXX was confirmed by karyotype. For the false-positive cases, mean maternal age was significantly higher in monosomy X (P<.001) and lower in XXX (P=.008).
Conclusion: Noninvasive prenatal testing results for sex chromosome aneuploidy can be confounded by maternal or fetal biological phenomena. When a discordant noninvasive prenatal testing result is encountered, resolution requires additional maternal history, detailed fetal ultrasonography, and determination of fetal and possibly maternal karyotypes.
References
-
- Bianchi DW, Wilkins-Haug L. Integration of noninvasive DNA testing for aneuploidy into prenatal care: what has happened since the rubber met the road? Clin Chem 2014;60:78–87.
-
- Scheffer PG, van der Schoot CE, Page-Christiaens GC, Bossers B, van Erp F, de Haas M. Reliability of fetal sex determination using maternal plasma. Obstet Gynecol 2010;115:117–26.
-
- Hill M, Lewis C, Jenkins L, Allen S, Elles RG, Chitty LS. Implementing noninvasive prenatal fetal sex determination using cell-free fetal DNA in the United Kingdom. Expert Opin Biol Ther 2012;12(suppl 1):S119–26.
-
- Devaney SA, Palomaki GE, Scott JA, Bianchi DW. Noninvasive fetal sex determination using cell-free fetal DNA: a systematic review and meta-analysis. JAMA 2011;306:627–36.
-
- Sehnert AJ, Rhees B, Comstock D, de Feo E, Heilek G, Burke J, et al.. Optimal detection of fetal chromosomal abnormalities by massively parallel sequencing of cell-free fetal DNA from maternal blood. Clin Chem 2011;57:1042–9.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources