Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014:2014:302-5.
doi: 10.1109/EMBC.2014.6943589.

A novel extreme learning machine for hypoglycemia detection

A novel extreme learning machine for hypoglycemia detection

Phyo Phyo San et al. Annu Int Conf IEEE Eng Med Biol Soc. 2014.

Abstract

Hypoglycemia is a common side-effect of insulin therapy for patients with type 1 diabetes mellitus (T1DM) and is the major limiting factor to maintain tight glycemic control. The deficiency in glucose counter-regulation may even lead to severe hypoglycaemia. It is always threatening to the well-being of patients with T1DM since more severe hypoglycemia leads to seizures or loss of consciousness and the possible development of permanent brain dysfunction under certain circumstances. Thus, an accurate early detection on hypoglycemia is an important research topic. With the use of new emerging technology, an extreme learning machine (ELM) based hypoglycemia detection system is developed to recognize the presence of hypoglycemic episodes. From a clinical study of 16 children with T1DM, natural occurrence of nocturnal hypoglycemic episodes are associated with increased heart rates (p <; 0.06) and increased corrected QT intervals (p <; 0.001). The overall data were organized into a training set with 8 patients (320 data points) and a testing set with 8 patients (269 data points). By using the ELM trained feed-forward neural network (ELM-FFNN), the testing sensitivity (true positive) and specificity (true negative) for detection of hypoglycemia is 78 and 60% respectability.

PubMed Disclaimer

Publication types

LinkOut - more resources