Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014:2014:6175-8.
doi: 10.1109/EMBC.2014.6945039.

Applications of microfluidics for studying growth mechanisms of tip growing pollen tubes

Review

Applications of microfluidics for studying growth mechanisms of tip growing pollen tubes

Amir Sanati Nezhad et al. Annu Int Conf IEEE Eng Med Biol Soc. 2014.

Abstract

Pollen tube, the fastest tip growing plant cell, plays essential role in life cycle of flowering plants. It is extremely sensitive to external cues and this makes it as a suitable cellular model for characterizing the cell response to the influence of various signals involved in cellular growth metabolism. For in-vitro study of pollen tube growth, it is essential to provide an environment the mimics the internal microenvironment of pollen tube in flower. In this context, microfluidic platforms take advantage of miniaturization for handling small volume of liquids, providing a closed environment for in-vitro single cell analysis, and characterization of cell response to external cues. These platforms have shown their ability for high-throughput cellular analysis with increased accuracy of experiments, and reduced cost and experimental times. Here, we review the recent applications of microfluidic devices for investigating several aspects of biology of pollen tube elongation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources