A walking controller for a powered ankle prosthesis
- PMID: 25571414
- PMCID: PMC4480765
- DOI: 10.1109/EMBC.2014.6945046
A walking controller for a powered ankle prosthesis
Abstract
This paper describes a walking controller implemented on a powered ankle prosthesis prototype and assessed by a below-knee amputee subject on a treadmill at three speeds. The walking controller is a finite state machine which emulates a series of passive impedance functions at the joint in order to reproduce the behavior of a healthy joint. The assessments performed demonstrate the ability of the powered prosthesis prototype and walking controller to reproduce essential biomechanical aspects (i.e. joint angle, torque, and power profiles) of the healthy joint, especially relative to a passive prosthesis.
Figures



References
-
- Hansen AH, Miff SC, Childress DS, Gard SA, Meier MR. Net external energy of the biologic and prosthetic ankle during gait initiation. Gait Posture. 2010;31(1):13–17. - PubMed
-
- Hansen AH, Childress DS, Miff SC, Gard SA, Mesplay KP. The human ankle during walking: implications for design of biomimetic ankle prostheses. J Biomech. 2004;37(10):1467–1474. - PubMed
-
- Molen NH. Energy/speed relation of below-knee amputees walking on a motor-driven treadmill. Internationale Zeitschrift fr angewandte Physiologie einschlielich Arbeitsphysiologie. 1973;31(3):173–185. - PubMed
-
- Torburn L, Powers CM, Guiterrez R, Perry J. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. J Rehabil Res Dev. 1995;32(2):111–119. - PubMed
-
- Torburn L, Perry J, Ayyappa E, Shanfield SL. Below-knee amputee gait with dynamic elastic response prosthetic feet: a pilot study. J Rehabil Res Dev. 1990;27(4):369–384. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources