Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan 1;2015(1):109-121.
doi: 10.1002/ejoc.201402984.

Biosynthetically Distinct Cytotoxic Polyketides from Setophoma terrestris

Affiliations

Biosynthetically Distinct Cytotoxic Polyketides from Setophoma terrestris

Tamam El-Elimat et al. European J Org Chem. .

Abstract

Sixteen polyketides belonging to diverse structural classes, including monomeric/dimeric tetrahydroxanthones and resorcylic acid lactones, were isolated from an organic extract of a fungal culture Setophoma terrestris (MSX45109) using bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Of these, six were new: penicillixanthone B (5), blennolide H (6), 11-deoxy blennolide D (7), blennolide I (9), blennolide J (10), and pyrenomycin (16). The known compounds were: secalonic acid A (1), secalonic acid E (2), secalonic acid G (3), penicillixanthone A (4), paecilin B (8), aigialomycin A (11), hypothemycin (12), dihydrohypothemycin (13), pyrenochaetic acid C (14), and nidulalin B (15). The structures were elucidated using a set of spectroscopic and spectrometric techniques; the absolute configurations of compounds 1-10 were determined using ECD spectroscopy combined with time-dependent density functional theory (TDDFT) calculations, while a modified Mosher's ester method was used for compound 16. The cytotoxic activities of compounds (1-15) were evaluated using the MDA-MB-435 (melanoma) and SW-620 (colon) cancer cell lines. Compounds 1, 4, and 12 were the most potent with IC50 values ranging from 0.16 to 2.14 μM. When tested against a panel of bacteria and fungi, compounds 3 and 5 showed promising activity against the Gram-positive bacterium Micrococcus luteus with MIC values of 5 and 15 μg/mL, respectively.

Keywords: Cytotoxicity; ergochromes; fungus; resorcylic acid lactones; secalonic acids.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Compounds 116 from S. terrestris (MSX45109).
Figure 2
Figure 2
Comparison of the experimental ECD spectra of secalonic acids A (1), E (2), and G (3) [0.03 mM CHCl3, cell length 2 cm].
Figure 3
Figure 3
Experimental and calculated ECD spectra for penicillixanthone A (4) [0.05 mM, CHCl3, cell length 2 cm].
Figure 4
Figure 4
Key COSY, HMBC, and NOESY correlations of 5–10 and 16. Based on the NOESY correlations, Gaussian 09 was used for ground state mechanics optimization to generate the structures shown on the right.
Figure 5
Figure 5
Experimental and calculated ECD spectra for penicillixanthone B (5) [0.06 mM, CHCl3, cell length 2 cm].
Figure 6
Figure 6
Experimental ECD spectra of 11-deoxyblennolide D (7) [0.16 mM] and paecilin B (8) [0.56 mM, CHCl3, cell length 2 cm].
Figure 7
Figure 7
Experimental and calculated ECD spectra for 11-deoxyblennolide D (7) [0.16 mM] and paecilin B (8) [0.56 mM, CHCl3, cell length 2 cm].
Figure 8
Figure 8
Experimental and calculated ECD spectra for blennolide I (9) [0.06 mM, CHCl3, cell length 2 cm].
Figure 9
Figure 9
Experimental and calculated ECD spectra for blennolide J (10) [0.17 mM, CHCl3, cell length 2 cm].
Figure 10
Figure 10
ΔδH values [Δδ (in ppm) = δSδR] obtained for (S)- and (R)-MTPA esters (16a and 16b, respectively) of pyrenomycin (16) in pyridine-d5.

Similar articles

Cited by

References

    1. El-Elimat T, Figueroa M, Ehrmann BM, Cech NB, Pearce CJ, Oberlies NH. J Nat Prod. 2013;76:1709–1716. - PMC - PubMed
    2. El-Elimat T, Figueroa M, Raja HA, Graf TN, Adcock AF, Kroll DJ, Day CS, Wani MC, Pearce CJ, Oberlies NH. J Nat Prod. 2013;76:382–387. - PMC - PubMed
    3. El-Elimat T, Zhang X, Jarjoura D, Moy FJ, Orjala J, Kinghorn AD, Pearce CJ, Oberlies NH. ACS Med Chem Lett. 2012;3:645–649. - PMC - PubMed
    4. Figueroa M, Graf TN, Ayers S, Adcock AF, Kroll DJ, Yang J, Swanson SM, Munoz-Acuna U, Carcache de Blanco EJ, Agrawal R, Wani MC, Darveaux BA, Pearce CJ, Oberlies NH. J Antibiot. 2012;65:559–564. - PMC - PubMed
    5. Sy-Cordero AA, Graf TN, Adcock AF, Kroll DJ, Shen Q, Swanson SM, Wani MC, Pearce CJ, Oberlies NH. J Nat Prod. 2011;74:2137–2142. - PMC - PubMed
    6. Sy-Cordero AA, Pearce CJ, Oberlies NH. J Antibiot. 2012;65:541–549. - PMC - PubMed
    7. Ayers S, Ehrmann BM, Adcock AF, Kroll DJ, Wani MC, Pearce CJ, Oberlies NH. Tetrahedron Lett. 2011;52:5733–5735. - PMC - PubMed
    8. Ayers S, Graf TN, Adcock AF, Kroll DJ, Matthew S, Carcache de Blanco EJ, Shen Q, Swanson SM, Wani MC, Pearce CJ, Oberlies NH. J Nat Prod. 2011;74:1126–1131. - PMC - PubMed
    9. Ayers S, Graf TN, Adcock AF, Kroll DJ, Shen Q, Swanson SM, Matthew S, Carcache de Blanco EJ, Wani MC, Darveaux BA, Pearce CJ, Oberlies NH. J Antibiot. 2012;65:3–8. - PMC - PubMed
    10. Ayers S, Graf TN, Adcock AF, Kroll DJ, Shen Q, Swanson SM, Wani MC, Darveaux BA, Pearce CJ, Oberlies NH. Tetrahedron Lett. 2011;52:5128–5230. - PMC - PubMed
    1. Braäse S, Encinas A, Keck J, Nising CF. Chem Rev. 2009;109:3903–3990. - PubMed
    2. Masters KS, Bräse S. Chem Rev. 2012;112:3717–3776. - PubMed
    3. Stoll A, Renz J, Brack A. Helv Chim Acta. 1952;35:2022–2034.
    4. Kurobane I, Iwahashi S, Fukuda A. Drugs Exp Clin Res. 1987;13:339–344. - PubMed
    5. Liao G, Zhou J, Wang H, Mao Z, Xiao W, Wang H, She Z, Zhu Y. Oncol Rep. 2010;23:387–395. - PubMed
    6. McPhee F, Caldera PS, Bemis GW, McDonagh AF, Kuntz ID, Craik CS. Biochem J. 1996;320(Pt 2):681–686. - PMC - PubMed
    1. Ito T, Masubuchi M. J Antibiot. 2014;67:353–360. - PubMed
    2. Yang JY, Sanchez LM, Rath CM, Liu X, Boudreau PD, Bruns N, Glukhov E, Wodtke A, de Felicio R, Fenner A, Wong WR, Linington RG, Zhang L, Debonsi HM, Gerwick WH, Dorrestein PC. J Nat Prod. 2013;76:1686–1699. - PMC - PubMed
    3. Klitgaard A, Iversen A, Andersen MR, Larsen TO, Frisvad JC, Nielsen KF. Anal Bioanal Chem. 2014;406:1933–1943. - PMC - PubMed
    1. Zhang W, Krohn K, Ullah Z, Florke U, Pescitelli G, Di Bari L, Antus S, Kurtan T, Rheinheimer J, Draeger S, Schulz B. Chem - Eur J. 2008;14:4913–4923. - PubMed
    1. Bräse S, Gläser F, Kramer CS. In: The Chemistry of Mycotoxins. Bräse S, Gläser F, Kramer C, Lindner S, Linsenmeier AM, Masters KS, Meister AC, Ruff BM, Zhong S, editors. Springer; Vienna: 2013. pp. 91–108. - PubMed