Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 May:412:181-95.
doi: 10.1113/jphysiol.1989.sp017610.

Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones

Affiliations

Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones

N Akaike et al. J Physiol. 1989 May.

Abstract

1. Low-voltage-activated Ca2+ channels which produce a transient inward current were studied in neurones freshly isolated from the ventromedial hypothalamic region of the rat. Membrane currents were recorded using a suction-pipette technique which allows for internal perfusion under a single-electrode voltage clamp. A concentration-jump technique was also used for rapid drug application. 2. In most cells superfused with 10 mM-Ca2+, a transient inward Ca2+ current was evoked by a step depolarization to potentials more positive than -65 mV from a holding potential of -100 mV. Such a low-threshold Ca2+ current could easily be separated from a high-threshold, steady type of Ca2+ current by selecting the holding and test potential levels, as well as by resistance to the wash-out during cell dialysis. 3. Activation and inactivation processes of the low-threshold Ca2+ current were highly potential dependent at 20-22 degrees C. For a test potential change from -60 to +20 mV, the time to peak of the current decreased from 45 to 9 ms, and the time constant of the current decay decreased from 90 to 40 ms. The steady-state inactivation occurred at very negative potentials, reaching a 50% level at -93 mV. Recovery from inactivation showed a time constant between 2.63 and 0.94 s for a potential change from -80 to -120 mV. 4. The amplitude of the low-threshold Ca2+ current depended on the external Ca2+ concentration [( Ca2+]o), approaching saturation at 100 mM [Ca2+]o. Ba2+ substituted for Ca2+ reduced the current amplitude by 30-50% while Sr2+ produced no definite changes in the current amplitude. 5. The low-threshold Ca2+ current was blocked by various di- or trivalent cations in the sequence of La3+ greater than Zn2+ greater than Cd2+ greater than Ni2+ greater than Co2+. The corresponding apparent dissociation constants (KD) were 7 x 10(-7), 1 x 10(-4), 3 x 10(-4), 6 x 10(-4) and 3 x 10(-3) M. 6. Various organic Ca2+ antagonists were effective in blocking the low-threshold Ca2+ current in the following sequence: flunarizine greater than nicardipine greater than nifedipine greater than nimodipine greater than D600 (methoxyverapamil) greater than diltiazem. The corresponding KDs were 7 x 10(-7), 3.5 x 10(-6), 5 x 10(-6), 7 x 10(-6), 5 x 10(-5) and 7 x 10(-5) M. These Ca2+ antagonists induced a use-dependent decrease in the current amplitude.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

References

    1. J Physiol. 1977 May;267(2):429-63 - PubMed
    1. Biochim Biophys Acta. 1964 May 25;79:581-91 - PubMed
    1. J Physiol. 1981 Jun;315:569-84 - PubMed
    1. J Physiol. 1982 Oct;331:231-52 - PubMed
    1. Dokl Akad Nauk SSSR. 1983;268(3):747-50 - PubMed

Publication types

LinkOut - more resources