Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov 29;6(11):114.
doi: 10.1186/s13073-014-0114-2. eCollection 2014.

Clinical detection and characterization of bacterial pathogens in the genomics era

Affiliations

Clinical detection and characterization of bacterial pathogens in the genomics era

Pierre-Edouard Fournier et al. Genome Med. .

Abstract

The availability of genome sequences obtained using next-generation sequencing (NGS) has revolutionized the field of infectious diseases. Indeed, more than 38,000 bacterial and 5,000 viral genomes have been sequenced to date, including representatives of all significant human pathogens. These tremendous amounts of data have not only enabled advances in fundamental biology, helping to understand the pathogenesis of microorganisms and their genomic evolution, but have also had implications for clinical microbiology. Here, we first review the current achievements of genomics in the development of improved diagnostic tools, including those that are now available in the clinic, such as the design of PCR assays for the detection of microbial pathogens, virulence factors or antibiotic-resistance determinants, or the design of optimized culture media for 'unculturable' pathogens. We then review the applications of genomics to the investigation of outbreaks, either through the design of genotyping assays or the direct sequencing of the causative strains. Finally, we discuss how genomics might change clinical microbiology in the future.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Applications of bacterial genomics to the management of infectious diseases. Genome sequence analysis has enabled the development of various clinical-microbiology tools for pathogen detection, identification or genotyping by identification of sequence fragments specific at distinct taxonomic levels (genus, species, strain, clone), for the detection of genes associated with antibiotic resistance or virulence and for the identification of deficient metabolisms to aid the development of optimized culture media. However, whole-genome sequencing, by giving access to the full genetic repertoire of an isolate, has demonstrated an undisputed discriminatory power for deciphering outbreaks of infectious diseases.
Figure 2
Figure 2
Principles of genome-based genotyping methods. By genomic comparison, investigators can identify specific sequence signatures that can be used in non-sequence-based methods (DNA banding-pattern-, PCR- or hybridization-based methods) or sequence-based methods (partial or complete genome sequencing). MLST, multi-locus sequence typing; MLVA, multiple locus variable number tandem repeat analysis; MST, muti-spacer sequence typing; PCR-RFLP, PCR-restriction fragment length polymorphism; PFGE, pulsed-field gel electrophoresis; RFLP, restriction fragment length polymorphism; SNP, single nucleotide polymorphism.

References

    1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128. doi: 10.1016/S0140-6736(12)61728-0. - DOI - PMC - PubMed
    1. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. - DOI - PubMed
    1. Relman DA, Falkow S. Identification of uncultured microorganisms: expanding the spectrum of characterized microbial pathogens. Infect Agents Dis. 1992;1:245–253. - PubMed
    1. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenney K, Sutton G, FitzHugh W, Fields C, Gocyne JD, Scott J, Shirley R, Liu L-I, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, et al. Whole-genome random sequençing and assembly of Hamophilus influenzaeRd. Science. 1995;269:496–512. doi: 10.1126/science.7542800. - DOI - PubMed
    1. Logares R, Haverkamp TH, Kumar S, Lanzen A, Nederbragt AJ, Quince C, Kauserud H. Environmental microbiology through the lens of high-throughput DNA sequencing: synopsis of current platforms and bioinformatics approaches. J Microbiol Methods. 2012;91:106–113. doi: 10.1016/j.mimet.2012.07.017. - DOI - PubMed