Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb 20;6(5):3033-42.
doi: 10.18632/oncotarget.2848.

Cyclin alterations in diverse cancers: Outcome and co-amplification network

Affiliations

Cyclin alterations in diverse cancers: Outcome and co-amplification network

Maria Schwaederlé et al. Oncotarget. .

Abstract

Cyclin genes are key regulatory components of the cell cycle. With the development of new agents, cyclin-related genes are becoming increasingly important as they can be targeted. Yet, the biological implications of these alterations have not been fully studied. Clinical characteristics and outcome parameters were compared for patients harboring cyclin alterations versus not. CCN alterations were found in 13% of our population (50/392; all amplifications) and were associated with breast cancer (P < 0.0001), a higher median number of concomitant molecular alterations (P < 0.0001), and liver metastases (P = 0.046). Harboring a cyclin amplification was not associated with overall survival, the time to metastasis/recurrence, nor with the best progression-free survival. In a Cox regression model, gastrointestinal histology (P < 0.0001), PTEN (P < 0.0001), and CDK alterations (P = 0.041) had a significant association with poorer overall survival. CCN amplifications significantly correlated with alterations in FGF/FGFR family genes as well as in MET and ARFRP1. An extended correlation study shed light on a network of co-amplifications influenced in part by genes that were localized on the same amplicons. CCN amplifications are common across cancers and had distinctive biological associations. Customized combinations targeting the cyclin pathway as well as the extended co- amplification network may be necessary in order to address resistance mechanisms.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Effects of cyclins on cell cycle
By interacting with CDKs, cyclins form complexes (cyclin D with CDK4/6 and cyclin E with CDK2) that phosphorylate Rb1 (phosphorylated Rb1 is inactive). The Rb protein is a tumor suppressor that plays a pivotal role in the negative control of the cell cycle; Rb1 loss of function is frequently observed in cancer [48]. When Rb1 is phosphorylated, E2F is released and can transcriptionally activate its target genes, enabling the G1/S transition of cell cycle. Cyclin D1 (CCND1) can also be regulated at the transcription level by the RAS-MEK-ERK pathway and at the translation level by mTOR via S6K and 4EBP1 [11, 12, 16, 17]. mTOR inhibitors may attenuate CCND1 action by decreasing translation of CCND1. CDK4/6 inhibitors may attenuate the effects of this pathway as well, especially in the presence of CDK4/6 amplification or CDKN2A/B loss (since CDKN2A/B inhibits CDK4/6 activity). Patients with Rb1 loss or mutations would be expected to be resistant to agents such as mTOR or CDK4/6 inhibitors that act more proximally.
Figure 2
Figure 2. CCN and co-alterations
In panel A, the connectors represent a statistically significant association in a multiple logistic regression model (P < 0.05). The double orange connectors represent a correlation with a P-value < 0.0001; in that case, there was chromosomal co-localization (panel B). Cyclin genes were CCND1, CCND2, CCND3, and CCNE1; FGF/FGFR gene family comprised FGF3/4/6/10/14/19/23 and FGFR1/2/3/4; ERBB comprised ERBB2/3/4; ZNF comprised ZNF217 and ZNF703. In panel B, chromosome co-localizations are represented by the same color. Boxes contain genes that are related family members.

References

    1. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011 Aug;11:558–72. - PubMed
    1. Caldon CE, Musgrove EA. Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div. 2010 Jan 17;5:2. - PMC - PubMed
    1. Arnold A, Kim HG, Gaz RD, Eddy RL, Fukushima Y, Byers MG, Shows TB, Kronenberg HM. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest. 1989 Jun;83:2034–40. - PMC - PubMed
    1. Motokura T, Bloom T, Kim HG, Jüppner H, Ruderman JV, Kronenberg HM, Arnold A. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature. 1991 Apr 11;350:512–5. - PubMed
    1. Rosenberg CL, Kim HG, Shows TB, Kronenberg HM, Arnold A. Rearrangement and overexpression of D11S287E, a candidate oncogene on chromosome 11q13 in benign parathyroid tumors. Oncogene. 1991 Mar;6:449–53. - PubMed

Publication types

MeSH terms