Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar;51(4):464-472.
doi: 10.1016/j.ejca.2014.11.014. Epub 2015 Jan 14.

Molecular mechanisms of constitutive and inducible NF-kappaB activation in oesophageal adenocarcinoma

Affiliations

Molecular mechanisms of constitutive and inducible NF-kappaB activation in oesophageal adenocarcinoma

Mohamed M M Abdel-Latif et al. Eur J Cancer. 2015 Mar.

Abstract

Background: Nuclear factor-kappaB (NF-κB) regulates the expression of a large number of genes involved in the immune and inflammatory response. NF-κB is constitutively activated in oesophageal tumour tissues and induced in oesophageal cells by bile and acid. The aim of the present study was to define the mechanisms underlying NF-κB activation in oesophageal adenocarcinoma.

Patients and methods: Fresh biopsy specimens were obtained from 20 patients with oesophageal adenocarcinoma. The activation of NF-κB in oesophageal tumour specimens and oesophageal SKGT-4 cells was assessed by gel mobility shift and Western blotting. Phosphorylation of protein kinase B (AKT/PKB), Ikappa kinase-alpha/beta (IKK-α/β) and extracellular signal-regulated kinase 1/2 (ERK1/2) was examined by Western blotting. High content analysis was used to quantify NF-κB translocation in oesophageal cells.

Results: Oesophageal tumour tissues had higher levels of NF-κB. Increased levels of phosphorylated AKT and IKK-α/β and ERK1/2 were detected in tumour tissues compared with normal oesophageal mucosa. Exposure of SKGT-4 cells to deoxycholic acid (DCA) or acid resulted in NF-κB activation and phosphorylation of AKT, IKK-α/β and ERK1/2. Specific inhibitors for phosphoinositide 3-kinase; PI3K (LY294002 and worhmannin) and ERK1/2 inhibitors (PD98059 and U0126) suppressed DCA- and acid-induced NF-κB activation. The proteasome inhibitor MG-132 and the antioxidants vitamin C and pyrrolidine dithiocarbamate (PDTC) also inhibited NF-κB activation.

Conclusions: Our data demonstrate a major role for PI3K/AKT-IKK-α/β-ERK1/2 signalling pathway in NF-κB activation in oesophageal adenocarcinoma. These results suggest that NF-κB may be a prognostic marker for oesophageal adenocarcinoma, and modulating of NF-κB may uncover new therapeutic strategies.

Keywords: Acid; DCA; HCA; NF-κB; Oesophageal adenocarcinoma.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Supplementary concepts

LinkOut - more resources