Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jan 5:5:732.
doi: 10.3389/fmicb.2014.00732. eCollection 2014.

Endogenous cross-talk of fungal metabolites

Affiliations
Review

Endogenous cross-talk of fungal metabolites

Kevin J Sheridan et al. Front Microbiol. .

Abstract

Non-ribosomal peptide (NRP) synthesis in fungi requires a ready supply of proteogenic and non-proteogenic amino acids which are subsequently incorporated into the nascent NRP via a thiotemplate mechanism catalyzed by NRP synthetases. Substrate amino acids can be modified prior to or during incorporation into the NRP, or following incorporation into an early stage amino acid-containing biosynthetic intermediate. These post-incorporation modifications involve a range of additional enzymatic activities including but not exclusively, monooxygenases, methyltransferases, epimerases, oxidoreductases, and glutathione S-transferases which are essential to effect biosynthesis of the final NRP. Likewise, polyketide biosynthesis is directly by polyketide synthase megaenzymes and cluster-encoded ancillary decorating enzymes. Additionally, a suite of additional primary metabolites, for example: coenzyme A (CoA), acetyl CoA, S-adenosylmethionine, glutathione (GSH), NADPH, malonyl CoA, and molecular oxygen, amongst others are required for NRP and polyketide synthesis (PKS). Clearly these processes must involve exquisite orchestration to facilitate the simultaneous biosynthesis of different types of NRPs, polyketides, and related metabolites requiring identical or similar biosynthetic precursors or co-factors. Moreover, the near identical structures of many natural products within a given family (e.g., ergot alkaloids), along with localization to similar regions within fungi (e.g., conidia) suggests that cross-talk may exist, in terms of biosynthesis and functionality. Finally, we speculate if certain biosynthetic steps involved in NRP and PKS play a role in cellular protection or environmental adaptation, and wonder if these enzymatic reactions are of equivalent importance to the actual biosynthesis of the final metabolite.

Keywords: NRPS; PKS; gliotoxin; natural products; redox homeostasis; secondary metabolites; siderophores; systems biology.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Systems overview. An integrated depiction of how precursors from ‘primary metabolism’ (i) feed into enzyme systems [NRPS, PKS, NRPS-PKS, and terpene synthases (TS)] which effect natural product/secondary metabolite biosynthesis and, in part, (ii) affect both chromatin structure (e.g., Acetyl CoA and SAM), and cellular redox status (e.g., GSH, EGT, and Fe3+). Chromatin structure, in turn, can (iii) regulate gene cluster expression and metabolite biosynthesis. (iv) Resultant natural products can interact synergistically to enable cellular function (e.g., iron uptake, antioxidant adaptation), or (v) influence cellular redox homeostasis which in turn can (vi) impact on gene cluster expression. Note: Fe3+ and EGT are not ’precursors’ per se, however, they either bind to (e.g., Fe3+-siderophores), or their biosynthesis is influenced by, natural products. *amino acids, proteogenic or non-proteogenic; **CoA, Coenzyme A, a substrate or co-factor for natural product biosynthesis; EGT, Ergothioneine; Open boxes, ancillary enzymes involved in PKS, NRPS, or TS.

Similar articles

Cited by

References

    1. Ames B. D., Liu X., Walsh C. T. (2010). Enzymatic processing of fumiquinazoline F: a tandem oxidative-acylation strategy for the generation of multicyclic scaffolds in fungal indole alkaloid biosynthesis. Biochemistry 49 8564–8576. - PMC - PubMed
    1. Amich J., Schafferer L., Haas H., Krappmann S. (2013). Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus. PLoS Pathog. 9:e1003573 10.1371/journal.ppat.1003573 - DOI - PMC - PubMed
    1. Atanasova L., Le Crom S., Gruber S., Coulpier F., Seidl-Seiboth V., Kubicek C. P., et al. (2013). Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genom. 14:121 10.1186/1471-2164-14-121 - DOI - PMC - PubMed
    1. Balibar C. J., Walsh C. T. (2006). GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochemistry 45 15029–15038. - PubMed
    1. Bayram O., Krappmann S., Ni M., Bok J. W., Helmstaedt K., Valerius O., et al. (2008). VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320 1504–1506 10.1126/science.1155888 - DOI - PubMed

LinkOut - more resources