Dissipative Raman solitons
- PMID: 25606940
- DOI: 10.1364/OE.22.030118
Dissipative Raman solitons
Abstract
A new type of dissipative solitons--dissipative Raman solitons--are revealed on the basis of numerical study of the generalized complex nonlinear Ginzburg-Landau equation. The stimulated Raman scattering significantly affects the energy scalability of the dissipative solitons, causing splitting to multiple pulses. We show, that an appropriate increase of the group-delay dispersion can suppress the multipulsing instability due to formation of the dissipative Raman soliton, which is chirped, has a Stokes-shifted spectrum, and chaotic modulation on its trailing edge. The strong perturbation of a soliton envelope caused by the stimulated Raman scattering confines the energy scalability preventing the so-called dissipative soliton resonance. We show, that in practical implementations, a spectral filter can extend the stability regions of high-energy pulses.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
