Tracking synthesis and turnover of triacylglycerol in leaves
- PMID: 25609824
- PMCID: PMC4339603
- DOI: 10.1093/jxb/eru500
Tracking synthesis and turnover of triacylglycerol in leaves
Abstract
Triacylglycerol (TAG), typically represents <1% of leaf glycerolipids but can accumulate under stress and other conditions or if leaves are supplied with fatty acids, or in plants transformed with regulators or enzymes of lipid metabolism. To better understand the metabolism of TAG in leaves, pulse-chase radiolabelling experiments were designed to probe its synthesis and turnover. When Arabidopsis leaves were incubated with [(14)C]lauric acid (12:0), a major initial product was [(14)C]TAG. Thus, despite low steady-state levels, leaves possess substantial TAG biosynthetic capacity. The contributions of diacylglycerol acyltransferase1 and phospholipid:diacylglycerol acyltransferase1 to leaf TAG synthesis were examined by labelling of dgat1 and pdat1 mutants. The dgat1 mutant displayed a major (76%) reduction in [(14)C]TAG accumulation whereas pdat1 TAG labelling was only slightly reduced. Thus, DGAT1 has a principal role in TAG biosynthesis in young leaves. During a 4h chase period, radioactivity in TAG declined 70%, whereas the turnover of [(14)C]acyl chains of phosphatidylcholine (PC) and other polar lipids was much lower. Sixty percent of [(14)C]12:0 was directly incorporated into glycerolipids without modification, whereas 40% was elongated and desaturated to 16:0 and 18:1 by plastids. The unmodified [(14)C]12:0 and the plastid products of [(14)C]12:0 metabolism entered different pathways. Although plastid-modified (14)C-labelled products accumulated in monogalactosyldiacylglycerol, PC, phosphatidylethanolamine, and diacylglcerol (DAG), there was almost no accumulation of [(14)C]16:0 and [(14)C]18:1 in TAG. Because DAG and acyl-CoA are direct precursors of TAG, the differential labelling of polar glycerolipids and TAG by [(14)C]12:0 and its plastid-modified products provides evidence for multiple subcellular pools of both acyl-CoA and DAG.
Keywords: Acyl-CoA; DGAT; diacylglycerol acyltransferase; leaf TAG; lipids; triacylglycerol..
© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Figures




References
-
- Andersson MX, Goksör M, Sandelius AS. 2007. Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. Journal of Biological Chemistry 282, 1170–1174. - PubMed
-
- Banas W, Carlsson AS, Banas A. 2014. Effect of overexpression of PDAT gene on Arabidopsis growth rate and seed oil content. Journal of Agricultural Science 6, p65.
-
- Bates PD, Browse J. 2011. The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. The Plant Journal 68, 387–399. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources