Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb 4;137(4):1658-62.
doi: 10.1021/ja512116p. Epub 2015 Jan 22.

Controlling structure and porosity in catalytic nanoparticle superlattices with DNA

Affiliations

Controlling structure and porosity in catalytic nanoparticle superlattices with DNA

Evelyn Auyeung et al. J Am Chem Soc. .

Erratum in

Abstract

Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through the assembly of two sets of 5 nm gold nanoparticles chemically modified with DNA bearing complementary sticky end sequences. These superlattices are embedded in silica and calcined at 350 °C to provide access to the catalytic nanoparticle surface sites. The calcined superlattice maintains its bcc ordering and has a surface area of 210 m(2)/g. The loading of catalytically active nanoparticles within the superlattice was determined by inductively coupled plasma mass spectrometry, which revealed that the calcined superlattice contained approximately 10% Au by weight. We subsequently investigate the ability of supported Au nanoparticle superlattices to catalyze alcohol oxidation. In addition to demonstrating that calcined superlattices are effective catalysts for alcohol oxidation, electron microscopy reveals preservation of the crystalline structure of the bcc superlattice following calcination and catalysis. Unlike many bulk nanoparticle catalysts, which are difficult to characterize and susceptible to aggregation, nanoparticle superlattices synthesized using DNA interactions offer an attractive bottom-up route to structurally defined heterogeneous catalysts, where one has the potential to independently control nanoparticle size, nanoparticle compositions, and interparticle spacings.

PubMed Disclaimer

Publication types

LinkOut - more resources