Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 8;34(41):5252-63.
doi: 10.1038/onc.2014.445. Epub 2015 Jan 26.

SHP-1 is a negative regulator of epithelial-mesenchymal transition in hepatocellular carcinoma

Affiliations

SHP-1 is a negative regulator of epithelial-mesenchymal transition in hepatocellular carcinoma

L-C Fan et al. Oncogene. .

Erratum in

Abstract

Epithelial-to-mesenchymal transition (EMT) is well known to involve in tumor invasion and metastasis. Src homology region 2 domain-containing phosphatase 1 (SHP-1) functions as a potent tumor suppressor and also acts as a negative regulator of p-STAT3(Tyr705) oncogenic signaling. However, little is known about the molecular mechanism(s) through which SHP-1 regulates EMT during hepatocellular carcinoma (HCC) progression. Here we first reported that endogenous SHP-1 protein levels were significantly downregulated in cells with mesenchymal characteristics and negatively correlated with p-STAT3(Tyr705) and vimentin but positively correlated with E-cadherin. SHP-1 overexpression abolished transforming growth factor-β1 (TGF-β1)-induced p-STAT3(Tyr705) and EMT, as well inhibited migration and invasion but further rescued by signal transducer and activator of transcription factor 3 (STAT3) overexpression. Depletion of SHP-1 could induce a more increase in TGF-β1-induced p-STAT3(Tyr-705) and EMT characteristics, further supporting the mechanism that suppression of TGF-β1-induced EMT is dependent on SHP-1-mediated STAT3 inactivation. Constitutively overexpressed SHP-1 tyrosine phosphatase activity by D61A-mutated SHP-1 markedly reduced TGF-β1-induced p-STAT3(Tyr705) and EMT features but was not altered by C453S catalytic-dead mutant SHP-1. Consequently, SHP-1 acted as a powerful suppressor in preventing EMT by exerting its tyrosine phosphatase activity that directly downregulated p-STAT3(Tyr705). Most notably, we discovered a novel SHP-1 agonist SC-43 better than sorafenib to exert more potent anti-EMT effects in vitro as well as anti-metastatic growth in vivo. In conclusion, SHP-1 is a potent suppressor of HCC EMT and metastasis, thus highlighting that SC-43-SHP-1 axis may serve as a potential therapeutic target that antagonized p-STAT3(Tyr705) and thereby prevented HCC EMT and metastasis.

PubMed Disclaimer

References

    1. J Biol Chem. 2011 Sep 16;286(37):32404-15 - PubMed
    1. Mol Interv. 2011 Feb;11(1):18-26 - PubMed
    1. Oncogene. 2005 Aug 29;24(37):5764-74 - PubMed
    1. Cell Res. 2009 Jan;19(1):89-102 - PubMed
    1. CA Cancer J Clin. 2005 Jan-Feb;55(1):10-30 - PubMed

Publication types

MeSH terms

Substances

Associated data