Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Feb;85(2):82-92.
doi: 10.1111/tan.12520.

B-cell biomarkers in transplantation--from genes to therapy

Affiliations
Review

B-cell biomarkers in transplantation--from genes to therapy

G D Banham et al. Tissue Antigens. 2015 Feb.

Abstract

An increased understanding of the mechanisms by which the immune system mounts a response to transplanted organs has allowed the development of immunosuppressive regimens that limit acute T-cell-mediated rejection (TCMR). However, the treatment of acute and chronic antibody-mediated rejection (ABMR) in kidney transplants remains sub-optimal. The occurrence and severity of antibody-mediated graft pathology are variable, and genetic polymorphisms that affect the magnitude and nature of the B-cell response, as well as effector functions of antibody, are likely to contribute to such phenotypic variation. Here we review current efforts to understand and quantify the contribution of B cells to renal transplant pathology by studying variation in DNA, mRNA and proteins. Large genetic studies with information on B-cell-specific genetic variants are scarce. At a transcriptomic level, there is evidence that B cells are essential contributors to transplant tolerance and may protect against TCMR and ABMR. In contrast, at the protein level, the detection of donor-specific human leukocyte antigen (HLA) antibodies and an assessment of their capacity to bind complement allow patients of high immunological risk to be identified. Other biomarkers, such as serum B-cell-activating factor (BAFF) or interleukin (IL)-10-producing B cells, may allow this risk stratification to be refined. An increased understanding of the significance of these biomarkers should allow a more accurate assessment of how an individual patient's B cells will impact allograft responses and thereby allow clinicians to adjust therapeutic strategies appropriately.

Keywords: B cells; genetic variation; kidney transplantation; tolerance; transcriptomics.

PubMed Disclaimer

Publication types