Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 16;54(12):3758-62.
doi: 10.1002/anie.201409877. Epub 2015 Jan 28.

Application of the tris(acetylacetonato)iron(III)/(II) redox couple in p-type dye-sensitized solar cells

Affiliations

Application of the tris(acetylacetonato)iron(III)/(II) redox couple in p-type dye-sensitized solar cells

Ishanie Rangeeka Perera et al. Angew Chem Int Ed Engl. .

Abstract

An electrolyte based on the tris(acetylacetonato)iron(III)/(II) redox couple ([Fe(acac)3](0/1-)) was developed for p-type dye-sensitized solar cells (DSSCs). Introduction of a NiO blocking layer on the working electrode and the use of chenodeoxycholic acid in the electrolyte enhanced device performance by improving the photocurrent. Devices containing [Fe(acac)3](0/1-) and a perylene-thiophene-triphenylamine sensitizer (PMI-6T-TPA) have the highest reported short-circuit current (J(SC)=7.65 mA cm(-2)), and energy conversion efficiency (2.51%) for p-type DSSCs coupled with a fill factor of 0.51 and an open-circuit voltage V(OC)=645 mV. Measurement of the kinetics of dye regeneration by the redox mediator revealed that the process is diffusion limited as the dye-regeneration rate constant (1.7×10(8) M(-1) s(-1)) is very close to the maximum theoretical rate constant of 3.3×10(8) M(-1) s(-1). Consequently, a very high dye-regeneration yield (>99%) could be calculated for these devices.

Keywords: dye-sensitized solar cells; energy conversion; iron; redox chemistry; semiconductors.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources