Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Oct 7;18(5):555.
doi: 10.1186/s13054-014-0555-4.

How much oxygen in adult cardiac arrest?

Affiliations
Review

How much oxygen in adult cardiac arrest?

Antonio Maria Dell'Anna et al. Crit Care. .

Abstract

Although experimental studies have suggested that a high arterial oxygen pressure (PaO2) might aggravate post-anoxic brain injury, clinical studies in patients resuscitated from cardiac arrest (CA) have given conflicting results. Some studies found that a PaO2 of more than 300 mm Hg (hyperoxemia) was an independent predictor of poor outcome, but others reported no association between blood oxygenation and neurological recovery in this setting. In this article, we review the potential mechanisms of oxygen toxicity after CA, animal data available in this field, and key human studies dealing with the impact of oxygen management in CA patients, highlighting some potential confounders and limitations and indicating future areas of research in this field. From the currently available literature, high oxygen concentrations during cardiopulmonary resuscitation seem preferable, whereas hyperoxemia should be avoided in the post-CA care. A specific threshold for oxygen toxicity has not yet been identified. The mechanisms of oxygen toxicity after CA, such as seizure development, reactive oxygen species production, and the development of organ dysfunction, need to be further evaluated in prospective studies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Summary of cellular and systemic effects of high oxygen (O 2 ) concentrations. H2O, water; H2O2, hydrogen peroxide; NO, nitric oxide; NOS, nitric oxide synthase; O2 • −, superoxide ion; OH, hydroxide ion; ONOO, peroxynitrite ion.

Comment in

References

    1. Nichol G, Thomas E, Callaway CW, Hedges J, Powell JL, Aufderheide TP, Rea T, Lowe R, Brown T, Dreyer J, Davis D, Idris A, Stiell I. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA. 2008;300:1423–1431. doi: 10.1001/jama.300.12.1423. - DOI - PMC - PubMed
    1. Atwood C, Eisenberg MS, Herlitz J, Rea TD. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation. 2005;67:75–80. doi: 10.1016/j.resuscitation.2005.03.021. - DOI - PubMed
    1. Goto Y, Maeda T, Nakatsu-Goto Y. Neurological outcomes in patients transported to hospital without a prehospital return of spontaneous circulation after cardiac arrest. Crit Care. 2013;17:R274. doi: 10.1186/cc13121. - DOI - PMC - PubMed
    1. Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche JD, Carli P, Mira JP, Nolan J, Cariou A. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39:1972–1980. doi: 10.1007/s00134-013-3043-4. - DOI - PubMed
    1. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–563. doi: 10.1056/NEJMoa003289. - DOI - PubMed