Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan 28;16(2):2864-78.
doi: 10.3390/ijms16022864.

Profiling of fatty acids composition in suet oil based on GC-EI-qMS and chemometrics analysis

Affiliations

Profiling of fatty acids composition in suet oil based on GC-EI-qMS and chemometrics analysis

Jun Jiang et al. Int J Mol Sci. .

Abstract

Fatty acid (FA) composition of suet oil (SO) was measured by precolumn methylesterification (PME) optimized using a Box-Behnken design (BBD) and gas chromatography/electron ionization-quadrupole mass spectrometry (GC-EI-qMS). A spectral library (NIST 08) and standard compounds were used to identify FAs in SO representing 90.89% of the total peak area. The ten most abundant FAs were derivatized into FA methyl esters (FAMEs) and quantified by GC-EI-qMS; the correlation coefficient of each FAME was 0.999 and the lowest concentration quantified was 0.01 μg/mL. The range of recovery of the FAMEs was 82.1%-98.7% (relative standard deviation 2.2%-6.8%). The limits of quantification (LOQ) were 1.25-5.95 μg/L. The number of carbon atoms in the FAs identified ranged from 12 to 20; hexadecanoic and octadecanoic acids were the most abundant. Eighteen samples of SO purchased from Qinghai, Anhui and Jiangsu provinces of China were categorized into three groups by principal component analysis (PCA) according to the contents of the most abundant FAs. The results showed SOs samples were rich in FAs with significantly different profiles from different origins. The method described here can be used for quality control and SO differentiation on the basis of the FA profile.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Optimization of precolumn methylesterified (PME) by Box–Behnken design (BBD)/GC–EI-qMS. (A) GC–EI-qMS chromatogram of the 25 fatty acid methyl esters (FAMEs) in suet oil (SO) sample under total ion chromatogram (TIC) mode. (1) Dodecanoic acid, methyl ester (DODME), (2) Methyl myristoleate, methyl ester, (3) Methyl 12-methyl-tridecanoate, methyl ester, (4) Tridecanoic acid, 12-methyl-, methyl ester, (5) Methyl tetradecanoate, methyl ester (MTEME), (6) Pentadecanoic acid, methyl ester (PENME), (7) (Z)-9-Hexadecenoic acid, methyl ester (9-HEME), (8) Hexadecanoic acid, methyl ester (HEXME), (9) Methyl 15-methylhexadecanoate, methyl ester, (10) cis-10-Heptadecenoic acid, methyl ester, (11) Heptadecanoic acid, methyl ester (HEPME), (12) (Z,Z)-9,12-Octadecadienoic acid, methyl ester (9,12-OCME), (13) Methyl 9-cis,11-trans-octadecadienoate methyl ester, (14) Methyl 10-trans,12-cis-octadecadienoate, (15) 9-Octadecenoic acid (E)-, methyl ester (9-OCME), (16) 9-Octadecenoic acid (Z)-, methyl ester, (17) 11-Octadecenoic acid, methyl ester, (18) Octadecanoic acid, methyl ester (OCTME), (19) cis-10-Nonadecenoic acid, methyl ester, (20) 10-Nonadecenoic acid, methyl ester, (21) Cyclopropaneoctanoic acid, 2-octyl-, methyl ester, (22) Nonadecanoic acid, methyl ester, (23) Methyl 8,11,14-eicosatrienoate, methyl ester, (24) cis-11-Eicosenoic acid, methyl ester, (25) Eicosanoic acid, methyl ester (EICME); (B) GC–EI-qMS chromatogram of representative blank samples under TIC mode; (C) Response surface plots (3-D) and contour (2-D) showing the total peaks areas with different methyl esterified condition. (a) 2-D panel of temperature-volum, (b) 2-D panel of time-temperature, (c) 2-D panel of time-volum, (d) 3-D response surface plots.
Figure 1
Figure 1
Optimization of precolumn methylesterified (PME) by Box–Behnken design (BBD)/GC–EI-qMS. (A) GC–EI-qMS chromatogram of the 25 fatty acid methyl esters (FAMEs) in suet oil (SO) sample under total ion chromatogram (TIC) mode. (1) Dodecanoic acid, methyl ester (DODME), (2) Methyl myristoleate, methyl ester, (3) Methyl 12-methyl-tridecanoate, methyl ester, (4) Tridecanoic acid, 12-methyl-, methyl ester, (5) Methyl tetradecanoate, methyl ester (MTEME), (6) Pentadecanoic acid, methyl ester (PENME), (7) (Z)-9-Hexadecenoic acid, methyl ester (9-HEME), (8) Hexadecanoic acid, methyl ester (HEXME), (9) Methyl 15-methylhexadecanoate, methyl ester, (10) cis-10-Heptadecenoic acid, methyl ester, (11) Heptadecanoic acid, methyl ester (HEPME), (12) (Z,Z)-9,12-Octadecadienoic acid, methyl ester (9,12-OCME), (13) Methyl 9-cis,11-trans-octadecadienoate methyl ester, (14) Methyl 10-trans,12-cis-octadecadienoate, (15) 9-Octadecenoic acid (E)-, methyl ester (9-OCME), (16) 9-Octadecenoic acid (Z)-, methyl ester, (17) 11-Octadecenoic acid, methyl ester, (18) Octadecanoic acid, methyl ester (OCTME), (19) cis-10-Nonadecenoic acid, methyl ester, (20) 10-Nonadecenoic acid, methyl ester, (21) Cyclopropaneoctanoic acid, 2-octyl-, methyl ester, (22) Nonadecanoic acid, methyl ester, (23) Methyl 8,11,14-eicosatrienoate, methyl ester, (24) cis-11-Eicosenoic acid, methyl ester, (25) Eicosanoic acid, methyl ester (EICME); (B) GC–EI-qMS chromatogram of representative blank samples under TIC mode; (C) Response surface plots (3-D) and contour (2-D) showing the total peaks areas with different methyl esterified condition. (a) 2-D panel of temperature-volum, (b) 2-D panel of time-temperature, (c) 2-D panel of time-volum, (d) 3-D response surface plots.
Figure 2
Figure 2
GC–EI-qMS chromatograms of the ten FAMEs standard mixture and sample under SIM mode and principal component analysis (PCA) of 18 SO samples. (A) (a) mixed standard solution (the concentration of (110) was 10.8, 47.6, 31.6, 13.0, 11.2, 12.8, 10.0, 20.0, 20.0 and 20.0 μg/mL, respectively), (b) SO sample solution. (1) DODME, (2) MTEME, (3) PENME, (4) 9-HEXME, (5) HEXME, (6) HEPME, (7) 9,12-OCME, (8) 9-OCME, (9) OCTME, (10) EICME; (B) The 3D scatter plot obtained by PCA of 18 SO samples.

References

    1. Thurnhofer S., Hottinger G., Vetter W. Enantioselective determination of anteiso fatty acids in food samples. Anal. Chem. 2007;79:4696–4701. doi: 10.1021/ac0702894. - DOI - PubMed
    1. Mattacks C.A., Sadler D., Pond C.M. Site-specific differences in the action of NRTI drugs on adipose tissue incubated in vitro with lymphoid cells, and their interaction with dietary lipids. Comp. Biochem. Phys. 2003;135:11–29. - PubMed
    1. Thurnhofer S., Vetter W. A gas chromatography/electron ionization-mass spectrometry-selected ion monitoring method for determining the fatty acid pattern in food after formation of fatty acid methyl esters. J. Agric. Food Chem. 2005;53:8896–8903. doi: 10.1021/jf051468u. - DOI - PubMed
    1. Barzanti V., Maranesi M., Cornia G.L., Malavolti M., Mordenti T., Pregnolato P. Effect of dietary oils containing different amounts of precursor and derivative fatty acids on prostaglandin E2 synthesis in liver, kidney and lung of rats. Prostag. Leukotr. Essent. 1999;60:49–54. doi: 10.1054/plef.1998.0007. - DOI - PubMed
    1. Cui L., Sun E., Zhang Z.H., Tan X.B., Wei Y.J., Jin X. Enhancement of epimedium fried with suet oil based on in vivo formation of self-assembled flavonoid compound nanomicelles. Molecules. 2012;17:12984–12996. doi: 10.3390/molecules171112984. - DOI - PMC - PubMed

Publication types