Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep;13(7):962-73.
doi: 10.1111/pbi.12335. Epub 2015 Jan 30.

Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants

Affiliations
Free article

Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants

Yang Yang et al. Plant Biotechnol J. 2015 Sep.
Free article

Abstract

In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees.

Keywords: PtSOS2; poplar; salt tolerance; transgenic plants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources