Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr:17:36-46.
doi: 10.1016/j.actbio.2015.01.023. Epub 2015 Jan 30.

Enhanced reliability of yttria-stabilized zirconia for dental applications

Affiliations
Free article

Enhanced reliability of yttria-stabilized zirconia for dental applications

Erik Camposilvan et al. Acta Biomater. 2015 Apr.
Free article

Abstract

An increasing number of dental applications based on yttria-stabilized zirconia (3 Y-TZP) have been developed in recent years as a result of the advances and versatility of dry-processing and soft machining at the pre-sintered state. Nonetheless, the long-term surface stability of these materials in humid environment is still a matter of concern and may limit its application. In this work, a simple method to prevent hydrothermal degradation on the zirconia surface is studied in detail. This method involves the infiltration of pre-sintered parts with optimized solutions containing Ce salts, leaving unchanged the other processing steps, allowing the diffusion of Ce during conventional sintering. Several pre-sintering conditions, solution concentrations and sintering temperatures were studied and characterized, obtaining working parameters for the production of zirconia parts with mechanical properties similar to standard 3 Y-TZP and high resistance to hydrothermal aging. This optimal combination was obtained with the 1150 °C pre-sintering temperature, 50 wt.% solution and sintering at 1450 °C, leading to a superficial CeO2 content of about 3 mol.%.

Keywords: Ceria; Dental implant; Infiltration; Low temperature degradation; Zirconia.

PubMed Disclaimer

Publication types

LinkOut - more resources