Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Oct;49(5):227-37.

[Development of physical dependence on nicotine and endogenous opioid system--participation of α7 nicotinic acetylcholine receptor]

[Article in Japanese]
  • PMID: 25651617
Review

[Development of physical dependence on nicotine and endogenous opioid system--participation of α7 nicotinic acetylcholine receptor]

[Article in Japanese]
Shiroh Kishioka et al. Nihon Arukoru Yakubutsu Igakkai Zasshi. 2014 Oct.

Abstract

Nicotine (NIC) regulates various cellular functions acting on the nicotinic acetylcholine receptor (nAChR). And nAChR consists of ligand-gated cation channels with pentameric structure and composed of α and β subunits. In the central nervous system, α 4 β 2 and α 7 nAChRs are the most abundantly expressed as nAChR subtypes. There are several lines of evidence indicating that systemic administration of NIC elicits the release of endogenous opioids, such as, endorphins, enkephalins and dynorphins, in the brain. NIC exerts numerous acute effects, for example, antinociceptive effects and the activating effects of the hypothalamic-pituitary-adrenal (HPA) axis. In these effects, NIC-induced antinociception, but not HPA axis activation, was inhibited by opioid receptor antagonist, naloxone (NLX), and was also suppressed in morphine tolerated mice, indicating the participation of the endogenous opioid system in NIC-induced antinociception, but not HPA axis activation. Moreover, NIC-induced antinociception was antagonized by both α 4 β 2 and α 7 nAChR antagonists, while NIC-induced HPA axis activation was antagonized by α 4 β 2 nAChR antagonist, but not by α 7 nAChR antagonist. These results suggest that the endogenous opioid system may not be located on the downstream of α 4 β 2 nAChR. On the other hand, NIC has substantial physical dependence liability. NLX elicits NIC withdrawal after repeated NIC administration evaluated by corticosterone increase as a withdrawal sign, and NLX-precipitated NIC withdrawal is inhibited by concomitant administration of other opioid receptor antagonist, naltrexone, indicating the participation of endogenous opioid system in the development of physical dependence on NIC. NLX-precipitated NIC withdrawal was also inhibited by concomitant administration of an α 7 nAChR antagonist, but not an α 4 β 2 nAChR antagonist. Taken together, these findings suggest that the endogenous opioid system may be located on the downstream of α 7 nAChR and participates in the development of physical dependence on NIC.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms