Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2015 May 15;24(10):2966-84.
doi: 10.1093/hmg/ddv035. Epub 2015 Feb 4.

Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

Nick Orr  1 Frank Dudbridge  2 Nicola Dryden  3 Sarah Maguire  3 Daniela Novo  3 Eleni Perrakis  3 Nichola Johnson  3 Maya Ghoussaini  4 John L Hopper  5 Melissa C Southey  6 Carmel Apicella  5 Jennifer Stone  7 Marjanka K Schmidt  8 Annegien Broeks  8 Laura J Van't Veer  8 Frans B Hogervorst  8 Peter A Fasching  9 Lothar Haeberle  10 Arif B Ekici  11 Matthias W Beckmann  10 Lorna Gibson  2 Zoe Aitken  2 Helen Warren  12 Elinor Sawyer  13 Ian Tomlinson  14 Michael J Kerin  15 Nicola Miller  15 Barbara Burwinkel  16 Frederik Marme  17 Andreas Schneeweiss  17 Chistof Sohn  18 Pascal Guénel  19 Thérèse Truong  19 Emilie Cordina-Duverger  19 Marie Sanchez  19 Stig E Bojesen  20 Børge G Nordestgaard  20 Sune F Nielsen  20 Henrik Flyger  21 Javier Benitez  22 Maria Pilar Zamora  23 Jose Ignacio Arias Perez  24 Primitiva Menéndez  25 Hoda Anton-Culver  26 Susan L Neuhausen  27 Hermann Brenner  28 Aida Karina Dieffenbach  28 Volker Arndt  29 Christa Stegmaier  30 Ute Hamann  31 Hiltrud Brauch  32 Christina Justenhoven  33 Thomas Brüning  34 Yon-Dschun KoHeli Nevanlinna  35 Kristiina Aittomäki  36 Carl Blomqvist  37 Sofia Khan  35 Natalia Bogdanova  38 Thilo Dörk  39 Annika Lindblom  40 Sara Margolin  41 Arto Mannermaa  42 Vesa Kataja  43 Veli-Matti Kosma  42 Jaana M Hartikainen  42 Georgia Chenevix-Trench  44 Jonathan BeesleyDiether Lambrechts  45 Matthieu Moisse  45 Guiseppe Floris  46 Benoit Beuselinck  46 Jenny Chang-Claude  47 Anja Rudolph  47 Petra Seibold  47 Dieter Flesch-Janys  48 Paolo Radice  49 Paolo Peterlongo  50 Bernard Peissel  51 Valeria Pensotti  52 Fergus J Couch  53 Janet E Olson  54 Seth Slettedahl  54 Celine Vachon  54 Graham G Giles  55 Roger L Milne  55 Catriona McLean  56 Christopher A Haiman  57 Brian E Henderson  57 Fredrick Schumacher  57 Loic Le Marchand  58 Jacques Simard  59 Mark S Goldberg  60 France Labrèche  61 Martine Dumont  59 Vessela Kristensen  62 Grethe Grenaker Alnæs  63 Silje Nord  63 Anne-Lise Borresen-Dale  62 Wei Zheng  64 Sandra Deming-Halverson  64 Martha Shrubsole  64 Jirong Long  64 Robert Winqvist  65 Katri Pylkäs  65 Arja Jukkola-Vuorinen  66 Mervi Grip  67 Irene L Andrulis  68 Julia A Knight  69 Gord Glendon  70 Sandrine Tchatchou  71 Peter Devilee  72 Robertus A E M Tollenaar  73 Caroline M Seynaeve  74 Christi J Van Asperen  75 Montserrat Garcia-Closas  76 Jonine Figueroa  77 Stephen J Chanock  77 Jolanta Lissowska  78 Kamila Czene  79 Hatef Darabi  79 Mikael Eriksson  79 Daniel Klevebring  78 Maartje J Hooning  74 Antoinette Hollestelle  74 Carolien H M van Deurzen  80 Mieke Kriege  74 Per Hall  79 Jingmei Li  81 Jianjun Liu  81 Keith Humphreys  79 Angela Cox  82 Simon S Cross  83 Malcolm W R Reed  84 Paul D P Pharoah  4 Alison M Dunning  4 Mitul Shah  4 Barbara J Perkins  4 Anna Jakubowska  85 Jan Lubinski  85 Katarzyna Jaworska-Bieniek  85 Katarzyna Durda  85 Alan Ashworth  3 Anthony Swerdlow  86 Michael Jones  87 Minouk J Schoemaker  86 Alfons Meindl  88 Rita K Schmutzler  89 Curtis Olswold  53 Susan Slager  53 Amanda E Toland  90 Drakoulis Yannoukakos  91 Kenneth Muir  92 Artitaya Lophatananon  93 Sarah Stewart-Brown  93 Pornthep Siriwanarangsan  94 Keitaro Matsuo  95 Hidema Ito  96 Hiroji Iwata  97 Junko Ishiguro  97 Anna H Wu  57 Chiu-Chen Tseng  57 David Van Den Berg  57 Daniel O Stram  57 Soo Hwang Teo  98 Cheng Har Yip  99 Peter Kang  100 Mohammad Kamran Ikram  101 Xiao-Ou Shu  64 Wei Lu  102 Yu-Tang Gao  103 Hui Cai  64 Daehee Kang  104 Ji-Yeob Choi  105 Sue K Park  104 Dong-Young Noh  106 Mikael Hartman  107 Hui Miao  108 Wei Yen Lim  108 Soo Chin Lee  109 Suleeporn Sangrajrang  110 Valerie Gaborieau  111 Paul Brennan  111 James Mckay  111 Pei-Ei Wu  112 Ming-Feng Hou  113 Jyh-Cherng Yu  114 Chen-Yang Shen  115 William Blot  116 Qiuyin Cai  64 Lisa B Signorello  117 Craig Luccarini  4 Caroline Bayes  4 Shahana Ahmed  4 Mel Maranian  4 Catherine S Healey  4 Anna González-Neira  118 Guillermo Pita  118 M Rosario Alonso  118 Nuria Álvarez  118 Daniel Herrero  118 Daniel C Tessier  119 Daniel Vincent  119 Francois Bacot  119 David J Hunter  120 Sara Lindstrom  120 Joe Dennis  121 Kyriaki Michailidou  121 Manjeet K Bolla  121 Douglas F Easton  122 Isabel dos Santos Silva  2 Olivia Fletcher  3 Julian Peto  2 GENICA NetworkkConFab InvestigatorsAustralian Ovarian Cancer Study Group
Affiliations
Multicenter Study

Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

Nick Orr et al. Hum Mol Genet. .

Abstract

We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Regional association plots for 9q31.2 fine-mapping SNPs in European and Asian ancestry individuals. (AD) Individual steps from a forward stepwise regression analysis using data from the Caucasian studies, in which the most strongly associated SNP from a given model is included as a covariate in the subsequent model. Chromosome position is indicated on the x-axis, and –log10 P-value on the y-axis. The models represented are adjusted for study and seven ancestry-informative principal components. Each directly genotyped SNP is represented as a single red diamond and the most significant SNP that attained genome-wide significance from each step of the stepwise regression is indicated by a yellow diamond. (E) Regional association plot for the 9q31.2 fine-mapping SNPs in subjects with Asian ancestry tested using a model adjusted for study and two ancestry-informative principal components.
Figure 2.
Figure 2.
Plots of genomic annotations with putative functional significance at the 9q31.2 fine-mapping region. (A) Publically available histone modification, DNase hypersensitivity and transcription factor binding data from MCF7 cells were mapped on to the breast cancer associated regions identified by fine-mapping. For SNPs rs10826625 and rs13294895, the iCHAVs were defined as SNPs having r2 ≥ 0.8 with either SNP; for rs676256 it was defined as all SNPs with r2 ≥ 0.8 and likelihood ratios >1:100 relative to rs676256. There were no other SNPs in the iCHAVs for rs10816625 and rs13294895. The rs676256 iCHAV comprised 28 SNPs. SNPs whose identifiers are shown in red type were of putative functional significance (see Materials and Methods). Where the lead SNP was not deemed to be of putative functional significance, it is indicated in green, as is the index 9q31.2 SNP, rs865686. (B) Regional binding profiles for ER-α in MCF7 cells shown plotted across the fine-mapping region using data from (31). The locations of the lead SNPs are indicated with yellow diamonds. (C) Regional binding profiles for FOXA1 in MCF7 cells shown plotted across the fine-mapping region using data from (31). The locations of the lead SNPs are indicated with yellow diamonds.
Figure 3.
Figure 3.
Chromatin conformation capture and reporter gene analysis of SNPs rs10816625 and rs13294895. (A) Chromatin interaction data from HindIII 3C libraries generated using MCF7 cells that indicates interactions between a fragment containing rs10816625 and rs13294895 (dashed line) and fragments surrounding KLF4. Results from three replicate libraries are plotted; each quantitative PCR reaction was performed in triplicate. Error bars represent standard mean errors. (B) Chromatin interaction data from HindIII 3C libraries generated using SUM44 cells. (C) Dual luciferase assays for reporter constructs containing the common alleles of both rs10816625 and rs13294895 (pGL4minP-AB), risk allele of rs10816625 (pGL4minP-aB), risk allele of rs13294895 (pGL4minP-Ab) and risk alleles of both SNPs (pGL4minP-ab) transiently transfected into MCF7 cells. Ratios were normalised to a minimal promoter construct (pGL4minP). Each transfection was repeated five times and constructs were generated in both forward and reverse orientations. (D) Dual luciferase assays for reporter constructs containing the common alleles of both rs10816625 and rs13294895 (pGL4minP-AB), risk allele of rs10816625 (pGL4minP-aB), risk allele of rs13294895 (pGL4minP-Ab) and risk alleles of both SNPs (pGL4minP-ab) transiently transfected into T47D cells.

References

    1. Ferlay J., Shin H.R., Bray F., Forman D., Mathers C., Parkin D.M. (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer, 127, 2893–2917. - PubMed
    1. Pharoah P.D., Antoniou A., Bobrow M., Zimmern R.L., Easton D.F., Ponder B.A. (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat. Genet., 31, 33–36. - PubMed
    1. Meijers-Heijboer H., van den Ouweland A., Klijn J., Wasielewski M., de Snoo A., Oldenburg R., Hollestelle A., Houben M., Crepin E., van Veghel-Plandsoen M., et al. (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat. Genet., 31, 55–59. - PubMed
    1. Rahman N., Seal S., Thompson D., Kelly P., Renwick A., Elliott A., Reid S., Spanova K., Barfoot R., Chagtai T., et al. (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet., 39, 165–167. - PMC - PubMed
    1. Renwick A., Thompson D., Seal S., Kelly P., Chagtai T., Ahmed M., North B., Jayatilake H., Barfoot R., Spanova K., et al. (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat. Genet., 38, 873–875. - PubMed

Publication types

MeSH terms

Grants and funding