Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr;23(2):430-438.
doi: 10.1111/jep.12298. Epub 2015 Feb 4.

Chaos to complexity: leveling the playing field for measuring value in primary care

Affiliations

Chaos to complexity: leveling the playing field for measuring value in primary care

William P Moran et al. J Eval Clin Pract. 2017 Apr.

Abstract

Rationale, aims and objectives: Develop a risk-stratification model that clusters primary care patients with similar co-morbidities and social determinants and ranks 'within-practice' clusters of complex patients based on likelihood of hospital and emergency department (ED) utilization.

Methods: A retrospective cohort analysis was performed on 10 408 adults who received their primary care at the Medical University of South Carolina University Internal Medicine clinic. A two-part generalized linear regression model was used to fit a predictive model for ED and hospital utilization. Agglomerative hierarchical clustering was used to identify patient subgroups with similar co-morbidities.

Results: Factors associated with increased risk of utilization included specific disease clusters {e.g. renal disease cluster [rate ratio, RR = 5.47; 95% confidence interval (CI; 4.54, 6.59) P < 0.0001]}, low clinic visit adherence [RR = 0.33; 95% CI (0.28, 0.39) P < 0.0001] and census measure of high poverty rate [RR = 1.20; 95% CI (1.11, 1.28) P < 0.0001]. In the cluster model, a stable group of four clusters remained regardless of the number of additional clusters forced into the model. Although the largest number of high-utilization patients (top 20%) was in the multiple chronic condition cluster (1110 out of 4728), the largest proportion of high-utilization patients was in the renal disease cluster (67%).

Conclusions: Risk stratification enhanced with disease clustering organizes a primary care population into groups of similarly complex patients so that care coordination efforts can be focused and value of care can be maximized.

Keywords: disease clustering; patient-centred medical home; practice-level resource allocation; risk stratification; social determinants of health.

PubMed Disclaimer

LinkOut - more resources