Tripartite and bipartite models of the photochemical apparatus of photosynthesis
- PMID: 256532
- DOI: 10.1002/9780470720431.ch13
Tripartite and bipartite models of the photochemical apparatus of photosynthesis
Abstract
Tripartite and bipartite models for the photochemical apparatus of photosynthesis are presented and examined. It is shown that the equations for the yields of fluorescence from the different parts of the photochemical apparatus of the tripartite model transform into the simple equations of the bipartite formulation when the probability for energy transfer from the light-harvesting chlorophyll a/b complex to photosystem II is unity. The nature of the 695 and 735 nm fluorescence bands which appear in the emission spectrum of chloroplasts at low temperature is examined. It is proposed that these bands are due to fluorescence from energy-trapping centres which form in the antenna chlorophyll of photosystem II and photosystem I on cooling to low temperature. Even though these fluorescence emissions can be regarded as low temperature artifacts since they are not present at physiological temperatures, they nevertheless are proportional to the excitation energy in the two photosystems and can be used to monitor energy distribution in the photochemical apparatus. However, the question of their artifactual nature is crucial to the interpretation of fluorescence-lifetime measurements at low temperature.