Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Summer;5(3):115-20.

Effect of Surface Treatment with Carbon Dioxide (CO2) Laser on Bond Strength between Cement Resin and Zirconia

Affiliations

Effect of Surface Treatment with Carbon Dioxide (CO2) Laser on Bond Strength between Cement Resin and Zirconia

Shahin Kasraei et al. J Lasers Med Sci. 2014 Summer.

Abstract

Introduction: Since it is not possible to form an adequate micromechanical bond between resin cement and zirconia ceramics using common surface treatment techniques, laser pretreatment has been suggested for zirconia ceramic surfaces. The aim of this study was to evaluate the effect of Carbon Dioxide (CO2) Laser treatment on shear bond strength (SBS) of resin cement to zirconia ceramic.

Methods: In this in vitro study thirty discs of zirconia with a diameter of 6 mm and a thickness of 2 mm were randomly divided into two groups of 15. In the test group the zirconia disc surfaces were irradiated by CO2 laser with an output power of 3 W and energy density of 265.39 j/cm(2). Composite resin discs were fabricated by plastic molds, measuring 3 mm in diameter and 2 mm in thickness and were cemented on zirconia disk surfaces with Panavia F2.0 resin cement (Kuraray Co. Ltd, Osaka, Japan). Shear bond strength was measured by a universal testing machine at a crosshead speed of 0.5 mm/min. The fracture type was assessed under a stereomicroscope at ×40. Surface morphologies of two specimens of the test group were evaluated under SEM before and after laser pretreatment. Data was analyzed by paired t-test (p value < 0.05).

Results: The mean SBS values of the laser and control groups were 12.12 ± 3.02 and 5.97 ± 1.14 MPa, respectively. Surface treatment with CO2 laser significantly increased SBS between resin cement and zirconia ceramic (p value = 0.001).

Conclusion: Under the limitations of this study, surface treatment with CO2 laser increased the SBS between resin cement and the zirconia ceramic.

Keywords: CO2 laser; resin cements; zirconium oxide.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Figure 2
Figure 2
Figure 3
Figure 3
Figure 4
Figure 4

Similar articles

Cited by

References

    1. Christel P, Meunier A, Heller M, Torre JP, Peille CN. Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res. 1989;23(1):45–61. - PubMed
    1. Aboushelib MN, de JN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater. 2005;21(10):984–91. - PubMed
    1. Piconi C, Burger W, Richter HG, Cittadini A, Maccauro G, Covacci V. et al. Y-TZP ceramics for artificial joint replacements. Biomaterials. 1998;19(16):1489–94. - PubMed
    1. Blatz MB. Long-term clinical success of all-ceramic posterior restorations. Quintessence Int. 2002;33(6):415–26. - PubMed
    1. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: a laboratory study. Int J Prosthodont. 2001;14(3):231–8. - PubMed

LinkOut - more resources