Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Fall;5(4):163-70.

Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration

Affiliations

Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration

Reza Amid et al. J Lasers Med Sci. 2014 Fall.

Abstract

Introduction: Low level laser therapy (LLLT) also known as photobiomodulation, is a treatment that uses low-level lasers or light-emitting diodes (LEDs) to change cellular function and is a clinically well accepted tool in regenerative medicine and dentistry. Considering the variety of laser, exposure, cells and study types, the exact effects of low level laser therapy seems to be unclear. The aim of this study was to review the data published in the field of the effects of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration.

Methods: To access relevant articles, an electronic search in PubMed was conducted from 2001 to April 2014. English language published papers on low level laser therapy were found using the selected keywords .The full texts of potentially suitable articles were obtained for final assessment according to the exclusion and inclusion criteria.

Results: 240 articles were found from 2001 to April 2014. Following the initial screening of titles and abstracts as well as the final screening of full texts, 22 articles completely fulfilled the inclusion criteria of this study. Wavelength used in LLLT irradiation varied between 600 to 1000 nm with an energy density of 0.04-60J/cm(2) . Although almost all studies agreed on getting positive effects from LLLT, some had opposing results.

Conclusion: Low level laser with low-energy density range appears to exert a biostimulatory effect on bone tissue, enhance osteoblastic proliferation and differentiation on cell lines used in in vitro studies. Despite the fact that many researches have been recently done on the effects of LLLT on different cell lines, without knowing the precise mechanism and effects, we are not able to offer a clinical treatment protocol. This paper is a beginning to help further progress and extend practical use of LLLT in future.

Keywords: bone regenerations; cell line; low-level laser therapies.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Rochkind S, Rousso M, Nissan M, Villarreal M, Barr-Nea L, Rees DG. Systemic effects of low‐power laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns. Lasers Surg Med. 1989;9(2):174–82. - PubMed
    1. Aggarwal H, Singh MP, Nahar P, Mathur H, Gv S. Efficacy of Low-Level Laser Therapy in Treatment of Recurrent Aphthous Ulcers–A Sham Controlled, Split Mouth Follow Up Study. J Clin Diagn Res. 2014;8(2):218–21. - PMC - PubMed
    1. Huertas RM, De Luna-Bertos E, Ramos-Torrecillas J, Leyva FM, Ruiz C, García-Martínez O. Effect and Clinical Implications of the Low-Energy Diode Laser on Bone Cell Proliferation. Biol Res Nurs. 2013;16(2):191–6. - PubMed
    1. Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surgery. 2005;23(2):161–6. - PubMed
    1. Renno A, McDonnell P, Crovace M, Zanotto ED, Laakso L. Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds. Photomed Laser Surg. 2010;28(1):131–3. - PubMed

LinkOut - more resources