Simultaneous parameters identifiability and estimation of an E. coli metabolic network model
- PMID: 25654103
- PMCID: PMC4303013
- DOI: 10.1155/2015/454765
Simultaneous parameters identifiability and estimation of an E. coli metabolic network model
Abstract
This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of the Escherichia coli K-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available.
Figures







Similar articles
-
On the identifiability of metabolic network models.J Math Biol. 2013 Dec;67(6-7):1795-832. doi: 10.1007/s00285-012-0614-x. Epub 2012 Nov 15. J Math Biol. 2013. PMID: 23229063
-
A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.Biotechnol Prog. 2008 Sep-Oct;24(5):993-1006. doi: 10.1002/btpr.73. Biotechnol Prog. 2008. PMID: 19194908
-
Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.Biosystems. 2010 May;100(2):150-7. doi: 10.1016/j.biosystems.2010.03.001. Epub 2010 Mar 10. Biosystems. 2010. PMID: 20226228
-
Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems.BMC Syst Biol. 2017 May 5;11(1):54. doi: 10.1186/s12918-017-0428-y. BMC Syst Biol. 2017. PMID: 28476119 Free PMC article.
-
A structured approach for selection among candidate metabolic network models and estimation of unknown stoichiometric coefficients.Biotechnol Bioeng. 1998 Apr 20-May 5;58(2-3):133-8. doi: 10.1002/(sici)1097-0290(19980420)58:2/3<133::aid-bit4>3.0.co;2-m. Biotechnol Bioeng. 1998. PMID: 10191382 Review.
Cited by
-
In silico Determination of Some Conditions Leading to Glycolytic Oscillations and Their Interference With Some Other Processes in E. coli Cells.Front Chem. 2020 Oct 28;8:526679. doi: 10.3389/fchem.2020.526679. eCollection 2020. Front Chem. 2020. PMID: 33195042 Free PMC article.
-
Development of an accurate kinetic model for the central carbon metabolism of Escherichia coli.Microb Cell Fact. 2016 Jun 21;15(1):112. doi: 10.1186/s12934-016-0511-x. Microb Cell Fact. 2016. PMID: 27329289 Free PMC article.
References
-
- Steuer R., Junker B. H. Computational models of metabolism: stability and regulation in metabolic networks. In: Rice S. A., editor. Advances in Chemical Physics. New York, NY, USA: John Wiley & Sons; 2008. pp. 6970–6992.
-
- Palsson B. Ø. Systems Biology—Properties of Reconstructed Networks. New York, NY, USA: Cambridge University Press; 2006.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials