Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May;56(5):917-29.
doi: 10.1093/pcp/pcv019. Epub 2015 Feb 4.

A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress

Affiliations

A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress

Tianzi Chen et al. Plant Cell Physiol. 2015 May.

Abstract

Drought stress negatively affects plant growth and limits plant productivity. Genes functioning in plant responses to drought stress are essential for the development of drought-tolerant crops. Here, we report that an R2R3-type MYB transcription factor gene in Gossypium barbadense, GbMYB5, confers drought tolerance in cotton and transgenic tobacco. Virus-induced gene silencing of GbMYB5 compromised the tolerance of cotton plantlets to drought stress and reduced the post-rewatering water recovery survival rate to 50% as compared with the 90% survival rate in the wild type (WT). Silencing GbMYB5 decreased proline content and antioxidant enzyme activities and increased malondialdehyde (MDA) content in cotton under drought stress. The expression levels of drought-inducible genes NCED3, RD22 and RD26 were not affected by the silencing of GbMYB5. However, GbMYB5-overexpressing tobacco lines displayed hypersensitivity to ABA and improved survival rates as well as reduced water loss rates under drought stress. Furthermore, stomatal size and the rate of opening of stomata were markedly decreased in transgenic tobacco. The overexpression of GbMYB5 enhanced the accumulation of proline and antioxidant enzymes while it reduced production of MDA in transgenic tobacco as compared with the WT under drought stress. The transcript levels of the antioxidant genes SOD, CAT and GST, polyamine biosynthesis genes ADC1 and SAMDC, the late embryogenesis abundant protein-encoding gene ERD10D and drought-responsive genes NCED3, BG and RD26 were generally higher in GbMYB5-overexpressing tobacco than in the WT under drought stress. Collectively, our data suggested that GbMYB5 was positively involved in the plant adaptive response to drought stress.

Keywords: Drought stress; GbMYB5; Gossypium barbadense; Overexpression; Tolerance; Virus-induced gene silencing.

PubMed Disclaimer

Publication types

MeSH terms