Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989 May;3(7):1799-806.

Pharmacological basis for the use of nimodipine in central nervous system disorders

Affiliations
  • PMID: 2565839
Review

Pharmacological basis for the use of nimodipine in central nervous system disorders

A Scriabine et al. FASEB J. 1989 May.

Abstract

Nimodipine, a Ca2+ antagonist with cerebrovasodilatory and anti-ischemic effects, binds to rat, guinea pig, and human brain membranes with high affinity (less than 1 nM). Only at higher concentrations has nimodipine been reported to block the release of some neurotransmitters and hormones from neuronal tissue. Nimodipine has no consistent effect on brain oxygen consumption or cortical ATP or phosphocreatine levels, although the ischemia-induced fall of brain ATP levels in gerbils or the lowering of intracellular brain pH in rabbits with focal cerebral ischemia were antagonized by the drug. In rats and baboons with middle cerebral artery occlusion, nimodipine was found to reduce neurological deficits without an increase in intracranial pressure or brain edema. Electrophysiological studies with nimodipine suggested a direct neuronal action. In rabbit dorsal root ganglion cells, concentrations as low as 20 nM were reported to block inward Ca2+ currents. Recent studies have suggested that nimodipine may also improve memory in brain-damaged or old rats, restore sensorimotor function and abnormal walking patterns of old rats, and accelerate acquisition of associative learning in aging rabbits. Blockade of age-related changes in Ca2+ fluxes in rat hippocampal neurones by nimodipine in vitro pointed to neuronal plasma membrane as the site of nimodipine action. The therapeutic usefulness of nimodipine appears not to be limited to cerebral ischemia, but may include dementia, age-related degenerative diseases, epilepsy, and ethanol intoxication.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources