Designing climate-resilient rice with ideal grain quality suited for high-temperature stress
- PMID: 25662847
- PMCID: PMC4669556
- DOI: 10.1093/jxb/eru544
Designing climate-resilient rice with ideal grain quality suited for high-temperature stress
Abstract
To ensure rice food security, the target outputs of future rice breeding programmes should focus on developing climate-resilient rice varieties with emphasis on increased head rice yield coupled with superior grain quality. This challenge is made greater by a world that is increasingly becoming warmer. Such environmental changes dramatically impact head rice and milling yield as well as increasing chalkiness because of impairment in starch accumulation and other storage biosynthetic pathways in the grain. This review highlights the knowledge gained through gene discovery via quantitative trait locus (QTL) cloning and structural-functional genomic strategies to reduce chalk, increase head rice yield, and develop stable lines with optimum grain quality in challenging environments. The newly discovered genes and the knowledge gained on the influence of specific alleles related to stability of grain quality attributes provide a robust platform for marker-assisted selection in breeding to design heat-tolerant rice varieties with superior grain quality. Using the chalkiness trait in rice as a case study, we demonstrate here that the emerging field of systems genetics can help fast-track the identification of novel alleles and gene targets that can be pyramided for the development of environmentally robust rice varieties that possess improved grain quality.
Keywords: Chalk; functional genomics; genetics; grain quality; milling and head rice yield; stress tolerance; systems biology; systems genetics..
© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Figures





References
-
- Aluko G, Martinez C, Tohme J, Castano C, Bergman CJ, Oard JH. 2004. QTL mapping of grain quality traits from the interspecific cross Oryza sativa×O. glaberrima . Theoretical and Applied Genetics 109, 630–639. - PubMed
-
- Ashida K, Iida S, Yasui T. 2009. Morphological, physical, and chemical properties of grain and flour from chalky rice mutants. Cereal Chemistry 86, 225–231.
-
- Bligh HFJ, Larkin PD, Roach PS, Jones CA, Fu H, Park WD. 1998. Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties. Plant Molecular Biology 38, 407–415. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources