Bayesian semiparametric copula estimation with application to psychiatric genetics
- PMID: 25664559
- PMCID: PMC5496008
- DOI: 10.1002/bimj.201300130
Bayesian semiparametric copula estimation with application to psychiatric genetics
Abstract
This paper proposes a semiparametric methodology for modeling multivariate and conditional distributions. We first build a multivariate distribution whose dependence structure is induced by a Gaussian copula and whose marginal distributions are estimated nonparametrically via mixtures of B-spline densities. The conditional distribution of a given variable is obtained in closed form from this multivariate distribution. We take a Bayesian approach, using Markov chain Monte Carlo methods for inference. We study the frequentist properties of the proposed methodology via simulation and apply the method to estimation of conditional densities of summary statistics, used for computing conditional local false discovery rates, from genetic association studies of schizophrenia and cardiovascular disease risk factors.
Keywords: B-spline densities; Cardiovascular disease risk factors; Gaussian copula; Schizophrenia.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conflict of interest statement
The authors have declared no conflict of interest.
Figures









Similar articles
-
Bayesian bivariate survival analysis using the power variance function copula.Lifetime Data Anal. 2018 Apr;24(2):355-383. doi: 10.1007/s10985-017-9396-1. Epub 2017 May 23. Lifetime Data Anal. 2018. PMID: 28536818
-
Analysis of paediatric visual acuity using Bayesian copula models with sinh-arcsinh marginal densities.Stat Med. 2019 Aug 15;38(18):3421-3443. doi: 10.1002/sim.8176. Epub 2019 May 29. Stat Med. 2019. PMID: 31144351
-
Semiparametric Bayesian latent variable regression for skewed multivariate data.Biometrics. 2019 Jun;75(2):528-538. doi: 10.1111/biom.12989. Epub 2019 Mar 29. Biometrics. 2019. PMID: 30365158 Free PMC article.
-
Revisiting Gaussian Markov random fields and Bayesian disease mapping.Stat Methods Med Res. 2023 Jan;32(1):207-225. doi: 10.1177/09622802221129040. Epub 2022 Nov 1. Stat Methods Med Res. 2023. PMID: 36317373 Free PMC article. Review.
-
Testing Conditional Independence in Psychometric Networks: An Analysis of Three Bayesian Methods.Multivariate Behav Res. 2024 Sep-Oct;59(5):913-933. doi: 10.1080/00273171.2024.2345915. Epub 2024 May 11. Multivariate Behav Res. 2024. PMID: 38733319 Review.
References
-
- Andreassen O, Djurovic S, Thompson W, Schork A, Kendler K, ODonovan M, Rujescu D, Werge T, van de Bunt M, Morris A, McCarthy M, Roddey J, McEvoy L, Desikan R, Dale A. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular disease risk factors. American Journal of Human Genetics. 2013;92:197–209. - PMC - PubMed
-
- Chan JC, Jeliazkov I. MCMC estimation of restricted covariance matrices. Journal of Computational and Graphical Statistics. 2009;18:457–480.
-
- Chen X, Fan Y, Tsyrennikov V. Efficient estimation of semiparametric multivariate copula models. Journal of the American Statistical Association. 2006;101:1228–1240.
-
- Chib S, Jeliazkov I. Inference in semiparametric dynamic models for binary longitudinal data. Journal of the American Statistical Association. 2006;101:685–700.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical